
Internet, intranet and Web — Lecture II
World Wide Web: standards, protocols, documents

Marco Solieri marco.solieri@lipn.univ-paris13.fr
Info et Réseaux en Apprentissage, Sup Galilée, Université Paris 13

November 6th, 2014

Outline

Contents

1 World Wide Web 1

2 Uniform Resource Identifier 2

3 HyperText Transfer Protocol 3

4 HTTP extensions 5

5 Web architectures 6

6 Web markup 7

7 XHTML 1 and HTML 4 markup 8

1 World Wide Web

Hypermedia
Ted Nelson, 1960s:

• removal of predeterminedness of text’s sequence:
hypertext

• (never-ended) implementation of needed technolo-
gies: Xanadu project

Definition 1 (Hypertext). A text with accessible refer-
ences (hyperlinks) to other text.

Timothy Barners-Lee, 1980s:

• simplification of hypertext concept

• project of needed technologies: WorldWideWeb

Definition 2 (World Wide Web). A system of hyperme-
dia accessed via the Internet and realized with a client-
server architecture.

Web client-server architecture
Client (browser)

• user interface for read-only access to hypermedia:

– visualize text and image,

– play sound and video;

• retrieval of documents from the server;

• extendible via software components:

– plugin: locally stored

– scripts: remotely downloaded (JavaScript pro-
gramming language);

Server

• transfer of hypermedia to client

• access to hypermedia, either:

– local (e.g. file) or remote (e.g. record in DB)

– static or dynamic (generated by software)

Basics of Web
Resource identifier (URI)

• identification for hypermedia and anything else,

• target for hyperlinks.

Communication protocol (HTTP)

• client-server stateless communication

• access to resources on the Internet

Document language (XHTML)

• realize hypertext and hypermedia

• hyperlinks support

1

2 Uniform Resource Identifier

2.1 Features

Resources

Definition 3 (Resource). An object available on the
World Wide Web.

What a resource could be:

• a file stored in a filesystem (e.g. a JPEG photo)

• a record of data (e.g from a DB)

• a file output of an application (e.g. a PDF docu-
ment)

• a concrete object (e.g. a person or a book)

• an abstract concept (e.g. a grammar of a language)

• . . .

Uniformity (or universality)
Common syntax for resources that could be located:

• Web, accessible via HTTP

• Internet, accessible via the appropriate protocol
(e.g. FTP)

Simple:

• protocol independence,

• self-contained (include any information needed)

• cost-effectiveness in storage and communication
(string format),

2.2 Definition

Types

Name (URN) unique, permanent and non-repudiable
tag

Locator (URL) information for effective access

Syntax

Definition 4 (URI syntax). schema : [// authority] path
[? query] [# fragment]

Where

Schema arbitrary string, protocol name in case of URL
(IANA)

authority hierarchical name of responsible a subspace
of names, where form is [userinfo @] host [: port]

where host is a domain name or an IP address

Path hierarchical name of resource, where separator is
/

Query specifications of resource, (typically) where sep-
arator is &, form is parameter=value and space is
+

Fragment secondary resource: internal of or relative to
the primary

Examples

Example 5 (URIs).

• http://www.ietf.org/rfc/rfc2396.txt

• ftp://ftp.is.co.za/rfc/rfc1808.txt

• cid:foo4%25foo1@bar.net

• mailto:John.Doe@example.com

• news:comp.infosystems.www.servers.unix

• file:///home/john/Documents/file.tex

• urn:isbn:0-486-27557-4

Special characters
Reserved characters: ; / : @ & = + $,

Escaped characters (with %NN):

• control characters, i.e. ASCII < 32

• non ASCII, i.e. Latin-1 > 127

• unwise characters: { } | \ ^ [] ‘

• delimiters: < > # % "

• reserved characters used with different meaning

2.3 Dynamics

Operations on URIs
Resolution

• generation of the corresponding absolute URL

• input:

– an URI reference (i.e. a relative URI)

– an URI which is not an URL

output: an URL

Dereferencing

• retrieval of the corresponding resource

• input: an URL

• output: a resource

2

3 HyperText Transfer Protocol

3.1 Connections

HTTP features

Client-server arch. the client opens the connection and
request a service, the server replies and closes the
connection.

Data independence support for transfer of HTML doc-
ument and any other format, via content negotia-
tion.

Statelessness any HTTP connection must contain any
information needed for the response.

Caching support for implementation of various caching
policies and tools.

Authentication specifications for various techniques of
user authentication.

Roles of a HTTP communication
Necessary roles:

User agent The client which initiates the HTTP request
(i.e. a browser or a bot)

Origin server The server who owns the resource

Extra roles (possible):

Proxy an application acting both as server and a client
and controlling the communication

• transparently (e.g. caching), or

• not transparently (e.g. verification, filtering,
enriching).

Gateway an application acting as the origin server (e.g.
load balancing or load layering)

Connection and persistence

Definition 6 (HTTP 1.0 connection). A request by client
and a reply by server.

Cons of having a distinct TCP connection for each
HTTP request:

• network overhead,

• computation overhead,

• time overhead.

HTTP 1.1 (IETF RFCs 2616, 2617) introduces connec-
tion persistence

Definition 7 (HTTP 1.1 connection). A sequence alter-
nating a request and a reply.

Definition 8 (HTTP 1.1 pipelining connection). A se-
quence alternating requests and ordered replies.

3.2 Requests

Request

Definition 9 (HTTP Request). A MIME message with
the following syntax:

Method URI Version CRLF

[Header CRLF]∗

CRLF

[Body]

Where

Method the type of action requested

Version one of HTTP/1.0 and HTTP/1.1

Header parameters of transmission, entity and request

Request methods
Main methods:

GET Retrieve a representation of a resource (since
HTTP 0.9). Could be:

• conditional, when specifying a criterion (e.g.
If-match, If-modified-since);

• partial, when specifying a portion of a request.

HEAD Retrieve server’s information about a resource.
Ask for a reply message without body: headers
only.

POST Relate an information to a resource Used for data
submission (e.g. from a form).

PUT Insert a resource. Create a new resource or substi-
tute the old one.

DELETE Remove a resource and any related informa-
tion.

Note: PUT and DELETE offer no access control (see
WebDAV).

3.3 Headers

Common headers: transmission
Main transmission headers

Date date and time of the transmission.

MIME-Version version of MIME used (i.e. 1.0).

Transfer-Encoding encoding format

Cache-Control caching policy requested or preferred

Connection type of connection to use (e.g. persistent or
not)

Via used by proxies and gateways

3

Message headers: entity
Main entity headers (about the message body)

Content-Type MIME type, mandatory if has a body

Content-Lenght size in bytes, mandatory

Content-Encoding encoding format

Content-Language human language

Content-Location URL

Content-MD5 MD5 digest value

Content-Range portion

Expires date of invalidation

Last-Modified date and time of last modification,
mandatory

Requests

Request message headers
Main request headers

• generic headers,

• entity headers about the related entity

• reply-specific headers, e.g.

User-Agent client description (e.g. name, version,
OS)

Referer URL of the resource linking the requested
one

Host domain name and port used, mandatory in
HTTP 1.1

Accept accepted MIME versions

Accept-Charset accepted character sets

Accept-Encoding accepted encoding formats

Accept-Language accepted human languages

If-Modified-Since minimum accepted date (only if
newer than)

If-Unmodified-Since maximum accepted date
(only if older than)

Example request

Example 10 (Click on http://ms.xt3.it/teaching.xhtml#iweb). GET /teaching.xhtml\#iweb HTTP/1.1

Host: ms.xt3.it

Connection: keep-alive

User-Agent: Mozilla/5.0 (X11; Linux i686)

AppleWebKit/535.19 (KHTML, like Gecko)

Chrome/18.0.1025.151 Safari/535.19

Accept: text/html,application/xhtml+xml,

application/xml,*/*
Accept-Encoding: gzip,deflate,sdch

Accept-Language: it,en-US,en

Accept-Charset: ISO-8859-1,utf-8,*

Properties of request methods
Definition 11 (Safety). The method has no side effects
on the internal state of the server.

• then the method can be executed by an intermediate
node (e.g. a caching proxy)

Definition 12 (Idempotence). Repetitions of the method
are equivalent to a single one.

• then the method can be re-executed

Properties of methods

GET HEAD POST PUT DELETE
Safety X X

Idempotence X X X X

3.4 Replies

Reply

Definition 13 (HTTP Reply). A MIME message with the
following syntax:

Version Status_code Reason_phrase CRLF

[Header CRLF]*

CRLF

Body

Where

Version one of HTTP/1.0 and HTTP/1.1

Status_code three-digits numeric code

Reason_phrase human-readable string

Status codes
Catogories and codes

1xx Informational wait for completion of request: 00

continue.

2xx Successuful requested action received and ac-
cepted: 00 Ok, 01 Created.

3xx Redirection requested action received, another ac-
tion should be performed: 01 Moved permanently,
02 Found, 03 See other, 04 Not modified.

4xx Client error requested action cannot be performed
because of client: 00 Bad request, 01 Unauthorized,
03 Forbidden, 04 Not found.

5xx Server error requested action cannot be performed
because of server: 00 Internal server error, 01 Not
implemented.

4

Reply headers
Headers in a reply could be:

• generic headers,

• entity headers if contains an entity (Content-Type
and Content-lenght mandatory)

• reply-specific headers, e.g.

Server server description (e.g. name, version, OS)

WWW-Authenticate authentication method and
parameters

Example reply

Example 14 (Reply from server). HTTP/1.1 200 OK

Vary: Accept-Encoding

Content-Encoding: gzip

Last-Modified: Fri, 04 Nov 2011 00:27:06 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 1924

Date: Sat, 11 May 2012 07:21:33 GMT

Server: lighttpd/1.4.28

<html>

...

4 HTTP extensions

4.1 Authentication and security

Client authentication
Information for challenge-response protocol

Realm description of the restricted-access area,

Credentials pair: username and password.

Authentication process:

1. client send a request for a restricted resource;

2. server replies with code 401 and a WWW-
Authenticate header:

• authentication method,

• authentication challenge;

3. client get username and password from user;

4. client send the request again, with response (and
will add it to any other request of that realm);

5. server verify response and

• accepts and serves the request, or

• replies with 403 Forbidden.

Client authentication methods
Basic authentication method:

• since HTTP 1.0,

• challenge: realm,

• response: Base64 encoding of
username:password.

Problem
Secrets sent in cleartext on the underlying channel!

Digest access authentication method

• since HTTP 1.1

• challenge: realm, nonce

• response: Hash(realm, nonce, username,
password)

HTTPS: HTTP Secure

Alert
HTTP with digest access authentication still insecure,
exposed to:

• eavesdropping,

• man-in-the-middle attacks.

Secure the underlay channel with SSL/TLS (IETF RFC
2818):

Confidentiality SSL/TLS encryption

Server authentication SSL/TLS key certificate

Client authentication Basic HTTP method (now se-
cured) or Digest method (SSL/TLS certification is
costly)

4.2 State management

State management: cookies
State management in a stateless protocol

• Enrich the connection with a persistent piece of
data: the cookie.

• Add special-purpose headers for handling.

• Proposed extension by Netscape

• Standardized by IETF RFC 6265

Cookie handling process:

1. server adds to the first response a Set-Cookie
header containing the cookie

2. server now start associating the unique cookie to
the client

3. client stores the cookie and will always add it to
requests for that server with a Cookie header.

5

Cookies
Content:

Comment description

Domain domain name for which is valid

MaxAge duration in seconds of validity

Path URI for which is valid

Secure need for secure channel (HTTPS)

Version

Uses:

Session management storage of session data, e.g.
shopping basket, web login, persistent login.

Personalization storage of user data, e.g. site cus-
tomization, user preferences.

Tracking storage of user behaviors, e.g. site navigation
history.

Cookies and user privacy
Third-party tracking cookies

• every connection could request to use cookies,

• advertisement enterprises buy banners in web
pages,

• ads contains a third-party web resource, dynami-
cally loaded,

• then: ads enterprises can use cookies to per-
form “web analytics” – tracking and profiling users
across multiple websites.

(Partial) countermeasures for a (little) more private
browsing:

• keep cookie storage clean of unnecessary cookies,

• disable setting of third-party cookie on the browser,

• disable loading of ads in general.

5 Web architectures

Static web
Every resource is physical stored:

• a web page can be composed of different resources

• every resource has a different URL

• client requests each resource and render the page

Pro: easily implementable.
Con: no automation, no integration between re-

sources.

Dynamic web
Most of resources are dynamically generated.
The website as a three-layers application:

1. storage: files for binary data, DBMS for structured
data

2. application: programs for the HTML generation

3. browser: HTML rendering

Two main approaches for implementing the applica-
tion:

Embedded code code inside HTML

Full application code and HTML templates

Embedded code
Script program inserted inside HTML documents as

comment:

• HTML as template,

• code as the application.

The web server:

• executes the interpreter on the content of special
comments,

• replaces the comment with the output from the in-
terpreter.

Pros:

• powerful: code integration with document,

• cost-effective: easy to use.

Cons:

• weak architecture: application and presentation de-
pendence,

• hard to design: application can become sparse.

Full applicationStronger separation between application logic and
presentation:

• source files for applications,

• template files for presentation.

Common approaches:

• static templates, read by the program and then
merged with the dynamically-generated HTML;

• a piece of program first generate the templates, later
used by the main module;

6

• a full template engine invokes the application, that
outputs lot of parameters, and inserts them into the
templates.

Pros:

• independence between application logic and pre-
sentation.

Cons:

• separation application/presentation still not com-
plete.

Four-layers web
The website as a four-layers application:

1. storage: files for binary data, DBMS for structured
data

2. application-logic: programs for content generation
(e.g. XML)

3. presentation: programs for content presentation
(e.g. XSLT)

4. browser: HTML rendering

Pros:

• full separation application/presentation,

• modular and simple architecture.

Cons:

• expensive: each step of the application triggers the
whole process: page regeneration, transmission,
and rendering,

• difficult naming and caching: each step of the ap-
plication need its own URL.

Four-layers web 2.0
Browser loads:

• a simpler HTML page, with missing parts (tem-
plate),

• JavaScript code (piece of program),

• some Ajax libraries (common implementation).

The client-side program can implement:

• presentation only: talks with the application-logic
layer on server-side via XML,

• presentation and application-logic: almost every-
thing on client-side, except for server requests and
storage queries

6 Web markup

Web markup
The five levels of web markup

Content the text with spaces, punctuations . . .

Structure paragraphs, lists, tables, emphasis, citations
. . .

Linking anchors for creating hyperlinks

Semantics meaning of contents, relations to other con-
cepts . . .

Presentation double interline for paragraph separation,
bullets for lists, red bold for emphasis, big centered
for title . . .

6.1 Brief history of web markup

Ancient history

• Birth (1991-1995)

– SGML-like definition by Timothy Barners Lee
(HTML 1)

– Refined version standardized by IETF (HTML
2)

– Markup language for hypertext: document
structuring, text formatting, hyperlinks, im-
ages . . .

• First browser war (1994-1998)

– Market war: Netscape Navigator vs Microsoft
Explorer

– Proprietary extensions to HTML: scripting
(JavaScript), style tags

– W3C foundation for improving effective stan-
dardization

– Document tests as browser visualization (it
works), instead of correctness (it is validated)

Middle ages

• The last word: HTML 4 (1997-1999)

– After lot of intermediate versions, HTML 4

– Several features added: i18n, style sheets,
frames . . .

– Separation between structure and presentation
(Strict DTD)

– Most recent and most used standard: version
4.01

7

• Format corruption for HTML and CSS (1997-
present)

– Web pages written as tag soup

– Transitional DTD still common

– Browser with quirk mode parsing, each with
its own algorithm

Aim change (1999-present)

– from a markup language for hypermedia

– to a language for web application.

Late middle ages (yup, present)

• Serialization (2000-2006)

– Reformulation of HTML 4.01 in XML 1.0
(XHTML 1)

– Modularized for user agent targeting (XHTML
1.1)

– Complete redesign, without backward com-
patibility, without participation of players from
browsers, search engines, CMSs (abandoned
draft XHTML 2)

• Defeat of the systematic approach (2004-present)

– WHAT Working Group opens and W3C re-
opens too for developing together a new
HTML version (He who ships working code wins)

– Not a new language, but changes to HTML 4:

∗ specifies common (good or bad) practices
as standard adds new features (web appli-
cation, multimedia)

∗ parsing algorithm specified :-)

∗ a living standard (even if W3C considers it
as draft)

∗ serialized syntax XHTML 5

6.2 Morals

A moral

Browser vendors showed us some cool stuff
that we will soon be able to do on the web.
Text that runs at an angle, boxes with round
corners, logos that spin, graphics that pulse to
the beat of the music, forms that (wow!) check
that you’ve entered a valid date. And everyone
tweeted ‘Wow, that’s cool’.

Well, it’s not cool. It’s a tragedy.

Michael Kay (W3C editor)Nov 4th, 2010

Our moral

We want to deliver:

• layered design,

• strictly-validated and fully-interoperable pages.

For markup we can use:

• XHTML 1, the best language so far;

• XHTML 5, changeable and with lim-
ited support: still partial, to be checked
(http://www.modernizr.com/)

Yes, we can!

Nevertheless...

True story.

7 XHTML 1 and HTML 4 markup

7.1 Document type and basic structure

Document type

Many markup languages

• Each language is formally defined in a DTD (Docu-
ment Type Definition):

– HTML 4.01: Strict, Transitional or Frameset

– XHTML 1.0: Strict, Transitional or Frameset

– XHTML 1.1: Basic 1.1, Mobile 1.2

• Each document has a statement of conformity to a
particular DTD: a document type declaration.

8

XML serialization
Motivations:

• stricter syntax,

• faster parsing

• easier manipulation,

• extensibility.

Differences to HTML:

• correct nesting,

• case sensitiveness,

• closing tags (<tag> . . .</tag>) or empty elements
(
),

• quoted attributes.

Example

Example 15 (Document type declarations). HTML 4.01

Strict document header:

<!DOCTYPE HTML

PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/

strict.dtd">

XHTML 1.0 Strict document header:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML

1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/

xhtml" xml:lang="en" lang="en">

Document structure tags
<html> root of the document

• <head> container for processing information and
metadata

– <base> base URL for all relative links,

– <meta> metadata, e.g. author, keywords,
HTTP headers,

– <style> definition or reference to CSS,

– <script> definition or reference to script;

• <body> container for displayable content of the
document

– Block elements

∗ rectangular shape,

∗ adjustable margin and size,
∗ not broken into multiple lines.

– Inline elements

∗ part of the text flow,
∗ necessarily included in a block element.

7.2 Inline elements

Anchor

• Creation a relation between the text and an URL.

• Text tagged <a>.

• With respect to the URL, text could become:

Target • attribute: id

• value: name of the fragment identifier

• use: make the text linkable with the name

Origin • attribute: href

• value: URL

• use: make the text a link to the URL

Phrase elements
Main phrase elements and semantic:

• emphasized,

• strongly emphasized,

• <abbr> explanation of an abbreviation,

• <dfn> definition of a single term,

• <code> snippet of source code.

Other elements and semantic:

•
 forced line break,

• <q> quotation,

• arbitrary: customized presentation and/or
behaviour.

7.3 Block elements

Structure and quotation
Document structure (pretending)

• Heading block

– tagged <hN>

– where 1 ≤ N ≤ 6 and top level is 1.

• Paragraph block

– tagged <p>.

9

Quotation

• <blockquote> block of quotation

Customized block

• tagged <div>

• arbitrary semantic, for customized presentation
and/or behaviour

Listing
Unordered list

• tagged

• items tagged

Ordered list

• tagged

• items tagged

Definition list

• tagged <dl>

• term item tagged <dt>

• definition tagged <dd>

7.4 Tables

Table

• Table tagged <table>, containing

– (possibly) a caption tagged <caption>

– rows tagged <tr>, containing:

∗ header cells tagged <th>

∗ data cells tagged <td>

– possible partition with:

∗ header group tagged <thead>

∗ footer group tagged <tfoot>

∗ body group tagged <tbody>

• Table element attributes

– a brief description in summary

– presentational aspect: border, width . . .

• When use a table?

– to create a table,

– not to lay the page out.

Table and cell spanning

• A cell can span next rows or columns: attr.
rowspan, colspan.

Example 16 (Table with spanning cells).
<table border="1" cellpadding="3"
width="75%" summary="Spanning cells">
<tr>
<td>Cell A</td>
<td colspan="2">Cell B</td>

</tr>
<tr>
<td colspan="2">Cell C</td>
<td rowspan="2">Cell D</td>

</tr>
<tr>
<td>Cell E</td>
<td>Cell F</td>

</tr>
</table>

Cell placement is A: 1,1 - B: 1,2-3 - C: 2,1-2 - D: 2-3,3 - E: 3,1 - F: 3,2

7.5 Images

Images

• Typical image formats: JPEG, PNG, GIF

• Empty element

• Main attributes:

src URL of the image (mandatory)

alt text alternative to image visualization

width forced width for visualization of the image

height forced height for visualization of the image

name name to be referred to the image

usemap image is a client-side map

ismap image is a server-side map

• Deprecated style attributes: align, border, vspace,
hspace.

7.6 Forms

Form
Goals:

1. asking information to the user

2. specification of information processing

• possible validation: client side, with JavaScript

• processing: server side, with HTTP request to
application

Root element <form>

• attribute method: the HTTP method of the request
to be performed, GET or POST,

• attribute action: URL of the HTTP request, typi-
cally of a script.

10

Input element

Tag <input />

• empty element

• attribute type, main possible values:

– text: single line of text

– password: single line of text to be hidden by
the browser

– button: button

– submit: button for form committing

– reset: button for form resetting

– checkbox: checkbox for (multiple) selection

– radio: radio buttons for single selection

– file: file upload (to be selected)

• attribute value semantics:

– default value, for text types

– descriptive text, for buttons types

– associated value, for selection types

Selection, button, text area elements

Selection element

• tag <select>,

• the content is a set of elements tagged <option>,

• elements could be grouped in elements tagged
<optgroup>.

Button element

• tag <button>,

• has content,

• more customizable than <input

type="submit">.

Text area element

• tag <textarea>

• multiple-lines text input

• size specified with mandatory attributes cols and
rows

Summarizing example
Example 17 (Subscription form).
<form action="add_subscriber.cgi" method="post"><p>

First name: <input type="text" name="firstname" />

Last name: <input type="text" name="lastname" />

Email: <input type="text" name="email" />

<input type="radio" name="sex" value="M" /> Male

<input type="radio" name="sex" value="F" /> Female

<button name="submit" value="submit"

type="submit" onclick="verify()">
Send

</button>
<button name="reset" type="reset">
Reset

</button>
</p></form>

Outline

Contents

11

