
Sharing,

Superposition

and Expansion

Geometrical Studies on the

Semantics and Implementation

of λ-calculi and Proof-nets

Marco Solieri

Thèse
présentée et soutenue le 30 novembre 2016
pour obtenir le grade de Docteur de l’Université Paris 13, spécialité informatique

et de Dottore di ricerca in informatica
dirigée et co-encadrée par Stefano Guerrini et Simone Martini, et Michele Pagani

preparée au sein du Laboratoire d’Informatique de Paris Nord
et du Dipartimento di Informatica – Scienza e Ingegneria

Jury (et rapporteurs) :

Laurent Regnier Professeur, Université d’Aix-Marseille Président rapporteur
(Patrick Baillot Chercheur, ENS Lyon Rapporteur)
Simone Martini Professeur, Université Paris 13 Directeur
Michele Pagani Professeur, Université Paris 7 Co-encadrant
Simone Martini Professore, Università di Bologna Co-directeur

Ian Mackie Chercheur, École Polytechnique Examinateur
Damiano Mazza Chercheur, Université Paris 13 Examinateur

© Marco Solieri
LIPN, Université Paris 13, Sorbonne Paris Cité, CNRS
DISI, Università di Bologna, INRIA
Université Franco-italienne
mailto:ms@xt3.it

http:///ms.xt3.it

Licensed under Creative Commons BY-NC-SA 4.0 International
cbna

Version 1.2
Last updated on Friday 28th October, 2016 at 02:22

Typeset by the author, using LATEX, PGF/TikZ, Kile, TeXstudio and many other pieces of free software

mailto:ms@xt3.it
http:///ms.xt3.it

Abstract

Elegant semantics and efficient im-
plementations of functional program-
ming languages can both be de-
scribed by the very same math-
ematical structures, most promin-
ently within the Curry-Howard cor-
respondence, where programs, types
and execution respectively coincide
with proofs, formulæ and normalisa-
tion. Such a flexibility is sharpened by
the deconstructive and geometrical ap-
proach pioneered by linear logic (LL)
and proof-nets, and by Lévy-optimal
reduction and sharing graphs (SG).

Adapting Girard’s geometry of in-
teraction, this thesis introduces the
geometry of resource interaction
(GoRI), a dynamic and denotational
semantics, which describes, algebra-
ically by their paths, terms of the
resource calculus (RC), a linear and
non-deterministic variation of the
ordinary lambda calculus. Infinite
series of RC-terms are also the domain
of the Taylor-Ehrhard-Regnier expan-
sion, a linearisation of LC. The thesis
explains the relation between the
former and the reduction by proving
that they commute, and provides an
expanded version of the execution
formula to compute paths for the
typed LC.

SG are an abstract implementation
of LC and proof-nets whose steps
are local and asynchronous, and shar-
ing involves both terms and contexts.
Whilst experimental tests on SG show
outstanding speedups, up to exponen-
tial, with respect to traditional imple-
mentations, sharing comes at price.
The thesis proves that, in the re-
stricted case of elementary proof-nets,
where only the core of SG is needed,
such a price is at most quadratic, hence
harmless.

Résumé

Des sémantiques élégantes et des im-
plémentations efficaces des langages de
programmation fonctionnels peuvent
être décrits par les mêmes structures
mathématiques, notamment dans la
correspondance Curry-Howard, où le
programmes, les types et l’exécution,
coïncident aux preuves, formules et
normalisation. Une telle flexibilité
est aiguisé par l’approche deconstruc-
tif et géométrique de la logique lin-
eaire (LL) et les réseaux de preuve, et
de la réduction optimale et les graphes
de partage (SG).

En adaptent la géométrie de l’interac-
tion de Girard, cette thèse propose
une géométrie de l’interaction des res-
sources (GoRI), une sémantique dy-
namique et dénotationelle, qui décrit
algébriquement par leur chemins,
les termes du calcul des ressources
(RC), une variation linéaire et non-
déterministe du lambda calcul (LC).
Les séries infinis dans RC sont aussi
le domaine du développement de
Taylor-Ehrhard-Regnier, une linéarisa-
tion du LC. La thèse explique la re-
lation entre ce dernier et la réduc-
tion démontrant qu’ils commutent, et
présente une version développé de la
formule d’exécution pour calculer les
chemins du LC typé.

Les SG sont un modèle d’implémen-
tation du LC, dont les pas sont locales
et asynchrones, et le partage implique
et les termes et les contextes. Bien
que les tests ont montré des accéléra-
tions exceptionnelles, jusqu à expo-
nentielles, par rapport aux implément-
ations traditionnelles, les SG n’ont pas
que des avantages. La thèse montre
que, dans le cas restreint des reseaux
élémentaires, où seule le cœur des SG
est requis, les désavantages sont au
plus quadratique, donc inoffensifs.

Sommario

Semantiche eleganti ed implemen-
tazioni efficienti di linguaggi di pro-
grammazione funzionale possono en-
trambe essere descritte dalle stesse
strutture matematiche, più notevol-
mente nella corrispondenza Curry-
Howard, dove i programmi, i tipi e
l’esecuzione coincidono, nell’ordine,
con le dimostrazioni, le formule e la
normalizzazione. Tale flsesibilità è
acuita dall’approccio decostruttivo e
geometrico della logica lineare (LL)
e le reti di dimostrazione, e della
riduzione ottimale e i grafi di condi-
visione (SG).

Adattando la geometria dell’intera-
zione di Girard, questa tesi introduce
la geometria dell’interazione delle
risorse (GoRI), una semantica din-
amica e denotazionale che descrive,
algebricamente tramite i loro per-
corsi, i termini del calcolo delle
risorse (RC), una variante lineare
e non-deterministica del lambda cal-
colo ordinario. Le serie infinite
di termini del RC sono inoltre il
dominio dell’espansione di Taylor-
Ehrhard-Regnier, una linearizzazione
del LC. La tesi spiega la relazione
tra quest’ultima e la riduzione di-
mostrando che esse commutano, e
fornisce una versione espansa della for-
mula di esecuzione per calcolare i per-
corsi del LC tipato.

I SG sono un modello d’implemen-
tazione del LC, i cui passi sono loc-
ali e asincroni, e la cui condivi-
sione riguarda sia termini che contesti.
Sebbene le prove sperimentali sui
SG mostrino accellerazioni eccezion-
ali, persino esponenziali, rispetto alle
implementazioni tradizionali, la con-
divisione ha un costo. La tesi di-
mostra che, nel caso ristretto delle reti
elementari, dove è necessario solo il
cuore dei SG, tale costo è al più quad-
ratico, e quindi innocuo.

iv

Contents

1 Introduction 1

1.1 Proof nets . 1

1.2 Geometry of Interaction . 2

1.3 Taylor-Ehrhard-Regnier expansion and resource calculus 3

1.4 Light logics . 3

1.5 Sharing graphs . 4

1.6 Lévy-optimal reduction . 5

1.7 Summary of contributions . 7

1.7.1 Superposition and expansion (Part I) 7

1.7.2 Sharing and efficiency (Part II) . 9

2 Lambda-calculus, linear logic and geometry of interaction 11

2.1 Introduction . 12

2.2 Nets and terms . 12

2.2.1 Pre-nets . 12

2.2.2 Proof-nets and paths . 14

2.2.3 Lambda terms and nets . 15

2.3 Proof-net reductions . 16

2.3.1 General notions . 16

2.3.2 Closed strategy . 18

2.4 Execution paths . 20

vi CONTENTS

2.4.1 Statics . 21

2.4.2 Dynamics . 21

2.4.3 Closed dynamics . 23

2.5 Computation as path execution . 25

2.5.1 Dynamic algebra . 25

2.5.2 Equivalence of execution and reduction 27

I Superposition and expansion 31

3 Geometry of Resource Interaction 33

3.1 Introduction . 34

3.2 Resource calculus . 34

3.2.1 Syntax . 35

3.2.2 Reduction . 35

3.3 Resource interaction nets . 36

3.3.1 Definition . 37

3.3.2 Term translation . 38

3.3.3 Reduction . 39

3.4 Resource paths . 45

3.4.1 Statics . 45

3.4.2 Dynamics . 46

3.4.3 Comprehensiveness and bijection . 48

3.4.4 Confluence and persistence . 51

3.5 Resource execution . 54

3.5.1 Dynamic algebra and execution . 54

3.5.2 Invariance and regularity . 57

3.6 Discussion . 60

3.6.1 Related works . 60

CONTENTS vii

3.6.2 Open questions . 61

3.6.2.1 Higher expressivity . 61

3.6.2.2 Geometry of differential interaction 61

4 Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction 63

4.1 Introduction . 64

4.1.1 Expansion and paths computation 64

4.1.2 Outline . 65

4.2 Taylor-Ehrhard-Regnier expansion . 65

4.2.1 Net expansion . 65

4.2.2 Term expansion and translation . 67

4.2.3 Path expansion . 71

4.3 Expansion and reduction . 75

4.4 Commutativity of reduction and expansion 76

4.4.1 Commutativity on nets . 76

4.4.2 Commutativity on paths . 80

4.5 Expansion and execution . 87

4.6 Discussion . 89

4.6.1 Related works . 89

4.6.2 Open questions . 89

4.6.2.1 Infinite paths . 89

4.6.2.2 Resource abstract machine for the lambda-calculus 90

4.6.2.3 Combinatorics of path expansion 90

II Sharing and efficiency 91

5 Sharing implementation of bounded logics 93

5.1 Introduction . 94

viii CONTENTS

5.2 Elementary and light proof-nets . 95

5.3 Sharing implementation . 98

5.3.1 Definition . 98

5.3.2 Rewriting properties . 99

5.4 Adequacy properties . 102

5.4.1 Correctness . 102

5.4.2 Weak completeness . 102

5.4.3 Optimality . 103

5.5 Correctness by syntactical simulation . 104

5.5.1 Unshared graphs . 104

5.5.2 From sharing graphs to unshared graphs 105

5.5.3 From unshared graphs to proof-nets 106

5.5.4 From sharing graphs to proof-nets 107

6 Efficiency of sharing implementation 109

6.1 Introduction . 110

6.2 Cost measures . 112

6.3 Input/output paths . 113

6.3.1 Statics . 114

6.3.2 Dynamics . 115

6.4 Sharing contexts . 117

6.4.1 Variable occurrences and sharing contexts 117

6.4.2 Positivity . 120

6.4.3 Path irrelevance . 132

6.5 Unshared cost of reductions . 133

6.5.1 Share . 133

6.5.2 Unshared cost of mIELL reduction 134

6.5.3 Unshared cost of SG reduction . 142

CONTENTS ix

6.6 Unshared cost comparison . 146

6.7 Discussion . 149

6.7.1 Related works . 149

6.7.2 Open questions . 150

Index 151

x CONTENTS

Chapter 1

Introduction

Computer science is one of the few where elegance and efficacy, which elsewhere are
frequently and variously opposed, can both be pursued exploiting their complementarit-
ies. Programming language theory is a notable example. Both foundational and practical
questions, for instance about semantics and implementations, can be phrased, explored
and sometimes answered employing the very same frameworks. A prominent one is the
Curry-Howard correspondence with proof theory, since there models of functional pro-
grams, types and execution essentially coincide with those of proofs, formulæ and norm-
alisation.

A modest example is given by the contributions presented in this thesis, and the literature
which it is based upon, ranging from the denotational semantics of a non-deterministic
variation of the λ-calculus, to the efficiency of a distributed model of computation for the
ordinary one. Such conceptually distant results have all been understood and expressed
within a narrow set of mathematical tools inspired by linear logic.

1.1 Proof nets

Linear logic [Girard, 1987] unveiled the relation between the algebraic concept of linear-
ity and the computational property of a function argument to be used exactly once. Its
formulæ are syntactically discriminated depending on their usage in a proof, as if they
are resources whose access is not gratis. Linear formulæ must be used exactly once in the
proof, whilst the others, marked by the exponential modality, can instead arbitrarily be
duplicated or erased. Thanks to this separation, the λ-calculus is allowed to have a subtler
type system, where operations of duplication and erasure are detached from β-reduction.

Proof-nets are one of the key tools introduced by linear logic. They are a graphical rep-
resentation of proofs in which each rule corresponds to a graph constructor named link
connecting the main premises of the rule to its main conclusion. Such a graphical ap-
proach allows to naturally equate proofs that, because of the rigidity of the traditional
sequent calculus, differ for bureaucratic details only. In the intuitionistic case, a proof-net

2 1. Introduction

is in fact a decorated graph representation of the corresponding λ-term (with explicit sub-
stitutions, to be precise [Di Cosmo, Kesner, and Polonovski, 2000, Accattoli, 2013]) that
adds exponential boxes: delimited sub-graphs that can be erased or duplicated only as a
whole. Another remarkable trait of proof-nets is that they allow the definition of the sys-
tem not only with an inductive formalisation given by axioms and logical rules, but also
with a geometrical condition on graphs that are freely built by assembling links together:
acyclicity of some kind paths, called switching.

1.2 Geometry of Interaction

The dynamics of β-reduction or cut elimination can be described in a purely geometric
way — studying paths in some graph representations of terms or proofs, and looking at
those which are persistent, i.e. that have a residual path in any reduct. The quest for
an effective semantic characterisation of persistence separately produced three notions of
paths.

Regularity An algebraical condition arising from a set of equations over a monoidal struc-
ture called the dynamic algebra, and whose objects are assigned to paths. Firstly
presented by Girard [1989], the formulation has been simplified by Danos and Reg-
nier [1995].

Legality Formulated in terms of pure graphical conditions by Asperti and Laneve [1995],
it allow to precisely observe the correspondence with Lévy’s labels [1978] and vir-
tual redexes (see also Section 1.6).

Consistency A simple matching condition on execution traces of a token-machine, called
contexts, developed by Gonthier, Abadi, and Lévy [1992a], and for which exist an
enjoyable tutorial by Mairson [2002]. It was formulated to understand the imple-
mentations [Lamping, 1989, Kathail, 1990] of the optimal reduction à la Lévy.

These notions are equivalent [Asperti, Danos, Laneve, and Regnier, 1994], and their com-
mon core idea — describing computation by local and asynchronous conditions on rout-
ing of paths — inspired the design of efficient parallel abstract machines [among others,
Mackie, 1995, Danos et al., 1997, Laurent, 2001, Pinto, 2001, Pedicini and Quaglia, 2007,
Dal Lago et al., 2014, Pedicini et al., 2014, Dal Lago et al., 2015]. More recently, the geo-
metry of interaction (GoI) approach has been fruitfully employed for semantic investiga-
tions which characterised quantitative properties of programs, with respect to both time
[e.g. Dal Lago, 2009, Perrinel, 2014, Aubert et al., 2016] and space complexity [Aubert
and Seiller, 2014, 2015, Mazza, 2015b, Mazza and Terui, 2015].

1.3. Taylor-Ehrhard-Regnier expansion and resource calculus 3

1.3 Taylor-Ehrhard-Regnier expansion and resource calcu-
lus

The previously mentioned decomposition of the intuitionistic implication enabled a differ-
ential constructor and linear combinations to extend: the λ-calculus into the differential
λ-calculus, discovered by Ehrhard and Regnier [2003]; and, more generally, linear logic
into the differential linear logic (DiLL) [Ehrhard and Regnier, 2006a, Tranquilli, 2011].
These constructions allow considering the Taylor expansion of a term [Ehrhard and Reg-
nier, 2008], which rewrites it as an infinite series of terms of the resource λ-calculus (RC).
It is a completely linear restriction of the differential λ-calculus, similar to the λ-calculus
with multiplicities [Boudol, 1993], where the argument of an application is a superposi-
tion of terms and must be linearly used. Taylor-Ehrhard-Regnier expansion contains any
finite approximation of the head-normalisation of a term, as evoked by its commutativity
with Böhm trees: the expansion of the Böhm tree of a term is equal to the normal form
of its expansion [Ehrhard and Regnier, 2006b].

The approximation of λ-calculus has been studied through linear logic’s sub-structural lens
also using affine calculi, those where duplication is forbidden, but erasure is allowed, [e.g.
Mazza, 2015a], and also using legal paths to guide the very process of linearisation [Alves
and Florido, 2005]. Moreover, Taylor-Ehrhard-Regnier expansion originated various in-
vestigations on quantitative semantics, using the concept of power series for describing
program evaluation, and has been applied in various non-standard models of computation
[see Danos and Ehrhard, 2011, Pagani, Selinger, and Valiron, 2014, for example].

1.4 Light logics

Intuitionistic Light Affine Logic (ILAL) is a variant of Girard’s Light Linear Logic (LLL)
[1995] introduced by Asperti and Roversi [2002]. The key property of light logics is that
they characterise the class of deterministic polynomial time functions: in these logics,
the length of cut-elimination is related to the size of the proof by a polynomial func-
tion, whose degree depends on the exponential depth of the proof, i.e., on the maximum
number of nested exponential boxes in the corresponding proof net.

In light logics, the control of computational complexity is obtained by restricting the use
of the !-exponential. In particular, the usual promotion rule of linear logic is replaced by
a functorial version that simultaneously introduces the !-modality on all the formulæ of
the sequent, with the proviso that the l.h.s. of the sequent contain at most one formula—
relaxing this proviso we get elementary complexity instead. In order to code all the poly-
nomial algorithms, light logics requires the introduction of another exponential modality
§ named paragraph. For this second modality, contraction is not allowed, and its intro-
duction rule is functorial—similarly to the case of the !-promotion, it adds a modality in
front of every formula in the sequent—but, differing from the case of the !-promotion,
there is no restriction on the size of the l.h.s. of the sequent and, on this side, the added
modality can be either a § or an !. In details, here it is the promotion rules for ! and §:

4 1. Introduction

With some provisos due to the presence of second order quantifiers [Dal Lago and Baillot,
2006], the exponential depth of a cut-free ILAL proof of a formula B = Ak ⊸ . . .A1 ⊸ A0

depends on the nesting depth of the exponential modalities in B. As a consequence, by
ensuring that a function f can be encoded by a proof of B and that its k arguments can
be suitably encoded (i.e., preserving a polynomial relation between the sizes of the input
data and of the corresponding proofs) by a proof of type A1, . . . ,Ak, we can conclude
that f can be computed in polynomial time. On the other hand, ILAL is complete, since
every polynomial time function can be represented into it [Asperti and Roversi, 2002],
i.e., encoded by a suitable ILAL proof. Summing up, a function f is polynomial time if and
only if it can be represented in ILAL.

IEAL is an elementary time variant of ILAL. In fact, by simply removing the constraint of
a unique formula on the left-hand side of the !-promotion rule, the time complexity of
the system passes from polynomial to elementary (i.e., bounded by a Kalmar elementary
function). In IEAL there is no need of the §-modality. Moreover, since every ILAL proof
can be transformed into an IEAL proof by replacing every § with an !, we see that ILAL is
indeed a subsystem of IEAL.

1.5 Sharing graphs

Sharing graphs are a graph rewriting system introduced by Lamping [1989] [but also in-
dependently by Kathail, 1990] in order to implement Lévy’s optimal reductions for λ-
calculus β-reduction [1978, 1980]. Lamping’s technique was successively cleaned and re-
formulated by Gonthier, Abadi, and Lévy [1992a], who also showed its relations with Gir-
ard’s geometry of interaction [1989] and pointed out that, indeed, sharing graphs imple-
ment a local and distributed algorithm for linear logic box duplication Gonthier, Abadi,
and Lévy [1992b] [see Asperti and Guerrini, 1998, for a comprehensive presentation of
sharing graphs and optimal reductions]).

Sharing graphs for optimal reduction can be also seen as a variant of interaction nets [La-
font, 1990], in which the interacting agents (the links) are indexed by a natural number.
The key property of interaction nets is that they are strongly confluent. In fact, an inter-
action net is formed by agents with a given number of ports, and edges connecting pairs
of ports in distinct agents, such that each port has a unique incident edge. Each agent has
a unique principal port through which it can interact with another agent only if the edge
is connected to the principal port of the other agent too. Each redex formed by a pair of
connected principal ports can be rewritten in a unique way. Summing up, the redexes of
an interaction net are disjoint and can be rewritten in a unique way; as a consequence, the
corresponding rewriting system is strongly confluent.

Among the sharing graphs rules that allow to implement β-reduction, only one, the βs-
rule, actually corresponds to reducing one or several shared β-redexes; the other rules
correspond instead to bookkeeping operations allowing to manage sharing and to explicit
the connection between links corresponding to β-redexes eventually hidden by sharing
nodes. Optimal sharing graphs implement Lévy’s optimal reduction, in the sense that the
optimal sharing reduction of a term t corresponds to a Lévy family reduction of t whose

1.6. Lévy-optimal reduction 5

length is equal to the number of βs-rules in the sharing reduction.

1.6 Lévy-optimal reduction

The aim of Lévy-optimal theory [1978] was to define a notion of optimal cost for the
reduction of a β-term. By reasoning on the notion of feasible sharing achievable in an
effective implementation of β-reduction, Lévy defined a notion of family of redexes col-
lecting all the redexes that can be shared by some efficient implementation — since in
some sense they can be seen as coming from a same origin — and he showed that there
exists a parallel reduction strategy reducing a whole family of redexes at each step. Ac-
cording to this, the length of a family reduction reducing a needed redex at each step (a
redex is needed when one of its residual must be reduced by, or is definitely present after,
any reduction sequence of the initial term) gives a lower bound to the complexity of any
reduction of a term. Therefore, by giving an implementation of Lévy optimal reduction
with a cost at least polynomially related to the length of the number of Lévy families, one
would show that Lévy families are a good measure of the cost of the reduction of a λ-term.

Unfortunately, Asperti and Mairson [2001] proved that this is not case, by showing that
the cost of the bookkeeping reduction in the sharing graph reduction of a term may
become Kalmar-elementary bigger than the number of βs-rules in any normalizing reduc-
tion, i.e. the cost of reducing such terms is not polynomially related to the number of
families in the term. This result is sometimes misunderstood as a negative one about the
efficiency of implementations with sharing graphs, even though it does not say anything
about it. In fact, it is achieved by showing that the cost of the reduction of the λ-terms
in a given family is at least Kalmar-elementar in their size. Nevertheless, such terms have
a polynomial number of families. Thus the mismatch between the effective cost of the
reduction and the Lévy optimal cost.

We stress that the above results does not address any negative consideration on sharing
implementations. They state that the number of bookkeeping operations in an optimal
sharing reduction can be much bigger than the number of βs-rules, not bound by any
Kalmar elementary function in the worst cases. But this is a consequence of the intrinsic
hardness of the language — the simply types λ-calculus — in which the cost of the reduc-
tion cannot be bound by any Kalmar-elementary function [Statman, 1979]. Therefore, no
other β-reduction implementation can do better than such a bound neither.

Empirical evidences from real implementations, for limited they can be, showed on the
other hand very promising performances. For instance, benchmarks of the Bologna
higher order optimal machine [Asperti, Giovannetti, and Naletto, 1996] on pure λ-terms
recorded polynomial cost of reduction against an exponential one of traditional imple-
mentations of functional languages. This does not scale to ‘real world’ functional pro-
grams, for which performances were measured in the same order of magnitude. At the
moment of writing, another optimal implementation, the King’s College lambda evalu-
ator [Mackie, 2004] is considered the most efficient implementations of the λ-calculus.

The question of effective efficiency of sharing reduction is then still open, and the case of
light and elementary logics is particularly significant. In fact, in the general case, one can

6 1. Introduction

distinguish two kinds of bookkeeping rules: the duplication rules that propagate shar-
ing links, and the rules for the control links, the so-called brackets, ensuring the proper
propagation of sharing links. The duplication rules correspond to a step by step imple-
mentation of the duplication of the arguments of β-rules— after the execution of a βs
rule, the argument of the rule is not duplicated, but a sharing node is inserted. The shar-
ing node will then duplicate link by link the argument when and if necessary. According
to the downward orientation from the node corresponding to the root of a term to the
nodes corresponding to variables, the scope of a duplication link ends at the variables of
the duplicating term. However, in sharing reductions, duplication does not proceed down-
wards only — from the root of a term towards its leafs, which correspond to its variables
— but in some cases (when duplicating a λ-abstraction), a duplication link propagating
upwards is inserted. Such a link is like a closed bracket matching a corresponding duplic-
ation link propagating downwards and delimit the bottom of its scope. In other words,
matching links are associated to the same duplication process and they delimit the part of
the graph that is left to duplicate.

Unfortunately, in the general case, matching links do not properly nest as a sequence of
matching brackets, since in some cases a duplication link propagating downwards may face
a duplication link propagating upwards that do not matches with it. When two matching
links faces, their scope is empty — they correspond to an opening bracket immediately
followed by a closing one, so they have nothing to duplicate — and they can be erased;
otherwise, the two links must swap continuing propagating (see the mux rules in Fig-
ure 5.6a).

A direct implementation of sharing reduction requires then a sort of oracle allowing to
decide when two facing sharing links are matching [see examples in Asperti and Guerrini,
1998, introduction]. Lamping [1989] showed that such an oracle can be implemented by
labelling each link with an index and by introducing some new control nodes, named
brackets, with a suitable set of rewriting rules managing link indexes. Lamping indexing
ensures that two facing sharing links are matching if and only if they have the same index.
Variants of Lamping’s algorithm have been proposed in the literature, but in any case we
have some links and rules implementing duplication, and some additional links and rules
implementing the oracle. The only exception are implementations of light/elementary
logics, where link indexes do not change along the reduction, which implies that the
oracle is not needed.

Asperti, Coppola, and Martini [2004] extended the result by Asperti and Mairson [2001]
to the particular case of elementary logic, proving that in this case also we can have terms
with a polynomial number of Lévy’s families, and therefore a polynomial number of shar-
ing β-reductions, which require a non-elementary duplication cost — since, again, their
reduction cannot be bound by any Kalmar-elementary function. Their analysis adds then
an argument in favor to sharing graph implementations. In fact, Baillot, Coppola, and
Dal Lago [2011] proved that the sharing implementation of elementary logic do not do
worst then the tight lower-bound already known. Moreover they prove the above result
for light logic too. In fact, the basic property of light and elementary logics is that the
cost of the reduction of any proof is bound by a polynomial in the size of the proof, for
the light case, and by an elementary function, for the elementary case. Baillot, Coppola
and Dal Lago show that the cost of the sharing reduction of a light or elementary proof

1.7. Summary of contributions 7

can be bound by a polynomial and elementary function, respectively. Which allow to get
two conclusions at the same time: first of all, another proof of the fact that light and ele-
mentary logics are sound with respect to the expected computational bound; second, that
sharing implementation introduce an overhead with respect to the usual implementation
of reduction that is limited by the same computational bound.

1.7 Summary of contributions

We will present results that can be ascribed to two lines of investigations, both rooted in
the related in their essence to the dynamics of linear logic’s contraction, and both based
on a geometrical viewpoint. The first, within the area of semantics, explore the structure
of superposition of resource calculus and that of Taylor expansion. The second, in the
theory of implementation, tackle the question of efficiency of sharing graphs.

1.7.1 Superposition and expansion (Part I)

How can geometry of interaction and Taylor-Ehrhard-Regnier expansion interact? What
is the GoI for resource calculus? How are paths dynamics related before and after the
expansion? Can we expand β-reduction into an infinite parallel step of resource reduc-
tions? Is there a linear and non-deterministic GoI for the resource calculus? Can we use
it to characterise persistent paths in λ-terms, via expansion? The first part of the thesis
addresses these questions and recounts the interplay between the two aforementioned se-
mantic approaches, exploring both directions of their mutual influence.

In Chapter 2 we recall the needed preliminary notions about proof-nets for minimal
MELL: the translation of λ-terms (Section 2.2), and the cut-elimination, together with che
closed reduction reduction strategy (Section 2.3). Also, we introduce a concise reworked
version of the geometry of interaction for such framework. We will introduce the appro-
priate notion of paths and inspect its dynamics, formalising the property of persistence,
which intuitively is the ability to survive to the graph rewriting until the normal form
(Section 2.4). On top of this, we articulate the algebraic structure of weights, traditionally
named “the dynamic algebra” (Section 2.5). Such algebra features a structural part which
models path operations like concatenation and reversal, and a logical part which instead
represent the interaction between paths, that lies under the reduction of containing proof-
nets. The main intuition behind it is that the algebra’s equations check for persistence of
a path by either: simplifying, and sometimes even neutralising, weights of sub-paths that
can be deformed, or shortened by reduction; or annihilating the weights of those that can
be destroyed by the latter. We will show that the execution of a proof-net, i.e. the set of
weights assigned to all its paths, is invariant under reduction (Theorem 2.1). This implies
that regularity is equivalent to persistence (Corollary 2.1).

In Chapter 3 we introduce resource interaction nets (RINs) and construct their geometry
of interaction. RINs are a promotion-free fragment of minimal differential logic, or a
linear-logic-like typing system and graphical formalism for RC. We first give an introduc-
tion to RC (Section 3.2) and then, following the linear logic tradition, we present RINs

8 1. Introduction

(Section 3.3) by mean of a correctness criterion, and we also show that the inductive defin-
ition by translation/typing of resource terms is equivalent, once it is closed by reduction.

We then adapt some of the previously introduced notions about paths to deal with the
fact that the reduct of a term t is a sum of terms t1 + . . . + tn (Section 3.4). Also, we
observe that every path in the net-representation of ti has to be a residual of some path
in the net of t, and that the reduction strongly normalises. Thus, we say that a path of
t is persistent whenever it has a residual in at least one of the addends of the reduct of
(the net of) t. Restricting to the constant type, whose only inhabitant is the value ⋆, we
have t → ⋆ + . . . + ⋆. Now there is only one persistent path of ⋆, the trivial one, therefore
we prove that persistent paths of t are as many as persistent paths of its normal form
(Theorem 3.1).

Furthermore, we define a suitable GoI for RC, in order to characterise persistence (Sec-
tion 3.5). We define the notion of regularity by rL∗, a monoidal structure simplifying
the dynamic algebra, where exponential modalities (! and ?) become an n-ary variant of
the multiplicatives connectives (resp. ⊗ and `), whose premises are not ordered. Mor-
ally, they are the sum of those generalised multiplicatives we obtain by considering all
the n! permutations of their premises. We weigh paths with objects of rL∗, and then
consider the sum of the weights of all paths in a RIN. What we obtain is the execution
formula for resource nets, which is shown to be invariant under reduction (Theorem 3.5).
Therefore, the construction provides a denotational semantics for RC and of the corres-
ponding logic, that is a minimal, propositional and promotion-free fragment of DiLL.
From invariance theorem not only we subsume the equivalence of persistence and reg-
ularity (Theorem 3.4), that is the usual result of GoI constructions, but we also show
that the number of addends in a normal form is equal to the number of regular paths
(Corollary 3.1).

In Chapter 4 we introduce a qualitative variant of Taylor-Ehrhard-Regnier expansion (Sec-
tion 4.2), which maps a proof-net, or a path within it, in an infinite sum of simple RINs, or
of set of paths within them. Since there the superposing sum is idempotent, the expansion
is essentially the infinite set. Also, we define a notion of expanded cut-elimination (Sec-
tion 4.3), a kind of infinite parallel reduction for RINs which reduces together all redexes
that are copied by the expansion. This allow us to prove (Section 4.4) the commutativity
between reduction and Taylor-expansion both at the level of nets (Theorem 4.1) and paths
(Theorem 4.3). Thank to this, we discover that the property of being persistent can be
transferred along expansion: a path persists to mMELL reduction if and only if there is a
path in its expansion which persists to RIN reduction (Theorem 4.4).

This last fact turns out to be particularly interesting, since it enable the definition (Sec-
tion 4.5) of a variant of the execution formula for typed λ-calculus that is based on the
GoRI. The idea is that, if we assign to every path π in a proof-net the infinite sets of rL∗-
weights that belong to the expansions of π, we obtain an expanded formula enjoying the
properties of our interest: invariance (Theorem 4.5), hence characterisation of persistence
(Corollary 4.1).

1.7. Summary of contributions 9

1.7.2 Sharing and efficiency (Part II)

Can we tighten the complexity overhead of sharing graph implementation of light and
elementary linear logics under the currently known upper bounds (polynomial and ele-
mentary)? Is it possible to do so by a direct syntactical simulation of sharing graphs in
proof-nets? Can such approach unveil which components of the sharing graph machinery
are the most efficient, and which other the most problematic?

Chapter 5 is devoted to present the sharing implementation of the elementary and light
variants of mMELL, recalling its main properties and proving its correctness by syntactical
simulations. In Section 5.2we present the proof-nets of mIELL, that represent a framework
of particular convenience because it considerably simplifies the rewriting system, whilst
in Section 5.3 we introduce their sharing implementation — the system SG— and its basic
properties. A brief review of the most notable qualitative behavioural properties of SG as
a Lévy-optimal implementation of mIELL proof-nets is given in Section 5.4. Among these,
there is the correctness: any SG-normal-form of a mIELL proof-net N is the mIELL-normal-
form of N . A proof is given in the concluding Section 5.5 (cf. Theorem 5.10), where
we employ a simple syntactical simulation of SG in mIELL, exploiting an intermediate
rewriting system — the unshared graphs (UG) — that possess the structure of mIELL proof-
nets and a some sharing markers corresponding to SG graphs.

In Chapter 6 we illustrate an original analysis of the complexity of SG reductions with
respect to mIELL reduction, showing that the former cannot be outperformed by the latter,
up to a quadratic factor. The two reduction systems present a substantial behavioural
difference in the way that they perform the duplication — small or big step — that is
clarified when we firstly need to assign a cost for them (Section 6.2). With the intent to
exploit the syntactical simulation between the system, we define on unshared graphs the
notion of sharing contexts (Section 6.4) that essentially tells, for every vertex and link in
a graph, the exact set of lifts (or their copies) that eventually will come there along any
reduction.

This tool allow to formulate the two key quantitative correspondences. On the one hand,
we can determine the set of sub-graphs of an unshared graph where a lift propagation will
happen, the share, that morally represent the non-local portion of a big step duplication’s
work (Subsection 6.5.1). On the other hand, among a set of lifts that are the unfolding of a
k-ary muxm, we can precisely select those that are on the boundary of the share and show
that their number correspond indeed to k. These two facts allow indeed to precisely trans-
fer (Section 6.5) and compare (Section 6.6) the costs of mIELL and SG reductions in UG
reductions. We show that the cost of logical operations and duplications essentially match
between the two systems — the overhead is bounded by a linear function of the mIELL-
cost. The same computational bound is obtained, this time indirectly, for annihilations,
merges and most swap rules. We are able to limit some special kind of redundant swaps,
instead, only by the product of the depth level of the graph and the square of the mIELL
cost. Hence, we will prove that the overhead of an SGRB-reduction, i.e. including the
read-back rules, with respect to its mIELL simulation is at most quadratic (Theorem 6.1).

10 1. Introduction

Chapter 2

Lambda-calculus, linear logic and
geometry of interaction

Contents

2.1. Introduction 12

2.2. Nets and terms 12

2.2.1 Pre-nets 12

2.2.2 Proof-nets and paths 14

2.2.3 Lambda terms and nets 15

2.3. Proof-net reductions 16

2.3.1 General notions 16

2.3.2 Closed strategy 18

2.4. Execution paths 20

2.4.1 Statics 21

2.4.2 Dynamics 21

2.4.3 Closed dynamics 23

2.5. Computation as path execution 25

2.5.1 Dynamic algebra 25

12 2. Lambda-calculus, linear logic and geometry of interaction

2.5.2 Equivalence of execution and reduction 27

2.1 Introduction

Even since the seminal paper by Girard [1989] it was clear that the elegance of the geo-
metry of interaction (GoI) construction reaches its maximum only in some limited cases,
where it represents a true denotational semantics, guaranteeing invariance with respect to
reduction. This chapter is devoted to recall preliminary notions of a convenient setting
for proof-nets and their translation of λ-terms, and to gently introduce the notion that
are needed to present an invariant GoI. In order to do so, we present a minimal fragment
of MELL and focus our attention on programs with ground types. There we exploit the
convenience of closed reduction, that eliminates an exponential cut only if the box has no
auxiliary doors (see Fernández, Mackie, and Sinot [2005] for a recent operational discus-
sion of various closed strategies, also includes complexity comparisions), and we are able
to formalise a strikingly simple, though detailed, proof of invariance

2.2 Nets and terms

We introduce the multiplicative exponential fragment of linear logic (MELL) restricting it
to the minimal version, with propositional and polarised formulæ/types. We shall call it
mMELL for short.

We use the terse formulation once dubbed nouvelle syntaxe and introduced by Regnier
[1992], where all negative links/rules of the exponential fragment, that are dereliction,
weakening and binary contraction, are represented with a unique object having an arbit-
rary number of premisses. With respect to the seminal presentation by Girard [1987] and
the advances with respect to polarisation by Laurent [2002], this approach introduces a
notable amount of conciseness and usability — from the syntax for terms/proofs to the
dynamics of their computation/cut-elimination — not to mention its fruitful similarities
to explicit substitution calculi [Di Cosmo et al., 2000, Accattoli, 2013, for instance].

2.2.1 Pre-nets

Definition 2.1 (Links). Given a denumerable set of symbols called vertices, a link is a
biparted and typed hyperedge, i.e. a triple (P,K,C), where:

P is a sequence of vertices, called premisses;

K is an element a finite set of kinds;

C is a singleton of a vertex, called conclusion, disjoint from P.

2.2. Nets and terms 13

Figure 2.1 Links: kind, arity and polarity associated to vertices, in both graphical and
textual notations. From left to right: constant, abstraction, application, promotion, con-
traction (or weakening when n = 0).

★
vout

⟨(★) vout⟩

⊸
vout

uin2uout1

⟨uout1 , uin2 (⊸) vout⟩

⊸̄
uout2

uin1vin

⟨uin1 , uout2 (⊸̄) vin⟩

!

vout

uin

⟨uin (!) vout⟩

?

uout1 uoutn

vin

. . .

⟨uout1 , . . . , uoutn (?) vin⟩

The polarity of a vertex is an element in {in,out}, that we say being opposite, and is
determined by K. The arity of a link is the length of P, which is also determined by K,
except when K = ?. A link ((u1, . . . , un), κ,{z}) will be denoted as ⟨u1, . . . un (κ) z⟩, or
more conveniently graphically depicted. In such a case, vertices of a link shall be placed
following the usual convention for λ-calculus graphs (out-vertices on top, in-vertices on
bottom); the arrow line shall be used to distinguish the conclusion of a link.

A mMELL link is a link having kind in {★,⊸, ⊸̄, !, ?}; and whose arity and assigned polar-
ities are determined by the link’s kind, as shown in Figure 2.1.

Definition 2.2 (Polarised types). A polarised type, or formula, is a word of the following
grammar, where ⋆ is the only ground type.

M ∶∶= ★ ∣ E⊸M (2.1)
E ∶∶= !M (2.2)

A typing function T is a map from vertices to types. If l = ⟨u1, . . . , un (K(l)) v⟩ is a link,
and A,B are types, then T respects the following constraints.

• If K(l) = ★, then T (v) = ★.
• If K(l) =⊸ or ⊸̄, then T (v) = A⊸B with A = T (u1) and B = T (u2).
• If K(l) = ? or !, then T (v) = !A, where A = T (u).

Definition 2.3 (Pre-net). A pre-net P is a triple (V, L,T), where V is a set of vertices,
L is a set of links and T is a typing function on V , such that for every vertex v ∈ V the
followings holds.

1. There are at least one and at most two links l, l ′ such that l ∋ v ∈ l ′, and when there
is only one, then v is called a conclusion of P. We wrote v ∈ l to mean v ∈ P(l)∪C(l).

2. the set C(P) of conclusions of P contains exactly one vertex u with out polarity,
and if u is the unique element of C(P) then P is called closed;

3. if l ∋ v ∈ l ′, then l, l ′ associate opposite polarities to v. In particular, if C(l ′) = v =
C(l), then v is called a cut, if P(l ′) ∋ v ∈ P(l), then v is called an axiom.

14 2. Lambda-calculus, linear logic and geometry of interaction

We shall also write V(P) and L(P) to denote the first and second component of P,
respectively. The type of a pre-net P is the type T = T (v), where v ∈ C(P) of out
polarity, written P ∶ T .
The interior of P is the complement of C(P) with respect to V(P). The interface of a pre-
net P is the set, for all v ∈ C(P), of the triple (v,T (v),p(v)) where the last is the polarity
of v. Two pre-nets P,Q are equal when there exists a type-preserving isomorphism ≃ such
that P ≃ Q. Given a pre-net P = (V, L,T), a sub-pre-net P ′ of P is a pre-net (V ′, L ′,T)
such that V ′ ⊆ V(P), L ′ ⊆ L(P ′), and T ′ is the restriction of T to V ′.

2.2.2 Proof-nets and paths

Definition 2.4 (Boxes). A boxing b is a function that maps promotions to sub-pre-nets
such that if B ⊆ P is associated with a !-link l, then B is a box and the followings are
satisfied.

1. The vertex v = P(l) belongs to V(B).
2. Any v ′ ∈ iface(B) different from v is the premiss of a ?-link or a conclusion of P.

3. There is no v ′ ∈ V(B) such that P(l ′) ∋ v ′ ∈ C(l ′′) whilst l ′ ∈ L(B) and l ′′ ∉ L(B).
4. For any !-link l ′ such that B ′ = b(l ′), if L(B) ∩ L(B ′) ≠ ∅ then B ⊆ B ′ or B ⊇ B ′.

Definition 2.5 (mMELL structures). A mMELL structure N is a pair (P, b) where P is a
pre-net with polarised types and b is a boxing for !-links of P. A sub-structure N ′ of N ,
written N ′ ⊆ N , is a structure (P ′, b ′) such that: P ′ ⊆ P, and b ′ is the restriction of b
to L(P ′) such that for any !-link l ∈ L(P ′), b(l) ⊆ P ′. If b(l) = P ′ for some !-link l in
L(N), then:

1. B = N ′ is a box of N ;

2. the sub-structure made by B and l is a bordered box and written B;

3. the vertex v ∈ iface(B) is called the principal door of B if v ∈ C(l), otherwise an
auxiliary door;

4. if B has no auxiliary doors then is a closed box.

The set of boxes of N is written Bxs (N). The box B is depicted drawing a dashed square
enclosing all the vertices in B and connecting its doors. In textual notation, B will be
denoted as its collapse to a link, e.g. as ⟨x1, . . . , xn [B] w⟩, where w is the principal door
and xi is an auxiliary one.

The box depth level, or simply the depth, of a vertex v, written `(v), is the number of boxes
it belongs to. By extension, the depth of a link l is `(C(l)), whilst the depth of a box⟨V [B] w⟩ is `(w). Two structures are equal when there exists a box- and type-preserving
isomorphism between them.

2.2. Nets and terms 15

In the rest of the chapter, we will mainly deal with the low-level notion of pre-net, so for
the sake of simplicity we will sometimes abuse the notation and talk about a structure (or
a proof-net) where we mean to refer to its pre-net; and we shall as well omit the pedantry
about typing and boxing, for instance simply saying “the box of” or “the type of”, instead
of “the box assigned by the boxing to” or “the type associated by the typing to”.

Definition 2.6 (Paths). Given a pre-net P, two vertices u,w ∈ P are connected, if there is
a link l ∈ P s.t. u,w ∈ l. A path π = (v1, . . . , vn) with n ≥ 0 in P is a sequence of vertices
s.t. for all i < n, the vertices vi, vi+1 are connected. We call π empty if its length is 0, trivial
if its length is 1, atomic if it is 2, and remark that in the latter case π crosses exactly one
link. We shall write u ∼ v when there is a path from u to v.

Definition 2.7 (Basic path operators). Given π = (v1, . . . , vn) and φ = (u1, . . . , um) in
P(N), we denote the reversal of π by π† = (vn, . . . , v1). If vn = u1 then the concatenation
of φ to π is defined as π ∶∶ π ′ = (v1, . . . , vn = u1, . . . um). If π ∈ P(N) and φ ∈ P(M), we
say π = φ when N = M and, if ≃ is the isomorphism such that N ≃ M, then vi ≃ ui, for
any 1 ≤ i ≤ n =m.

Definition 2.8 (Straight paths). Let N be a proof-net and π a paths in N . If π crosses
consecutively the same link l, then π is called bouncing. If l is not a ⋆-link, and π crosses
l through vi, vi+1 such that vi, vi+1 ∈ C(l) or vi, vi+1 ∈ P(l), then π is twisting. When
π is not bouncing nor twisting, π is straight. Given u, v ∈ V(P), we say u is consequent
to v, written u ≼ v, if there is a straight path π from u to v such that all of its links are
crossed from a premiss to a conclusion. In such a case, we say π is a concluding path. We
conversely also say v is antecedent to u, written as v ≽ u or that π† is assuming.

Definition 2.9 (Switching and cyclic paths [Danos and Regnier, 1989]). A path π in a
pre-net P is switching when, for every link in L(P) being ⟨v, v ′ (⊸) u⟩, or ⟨V (?) u⟩ with
v, v ′ ∈ V , π does not contain both v, v ′. A path γ = (v0, v1, . . . , vn, v0) for n > 0 is called a
cycle, and any π ⊇ γ is called cyclic.

Definition 2.10 (mMELL proof-nets). Given a net N , let L(N) be the net obtained by
interpreting each box as a single link, i.e. such that we can traverse it with a unitary
path. Then, N is a mMELL proof-net if any switching path in L(N) or in L(B), for any
B ∈ Bxs (N), is acyclic.

2.2.3 Lambda terms and nets

Definition 2.11 (λ-terms). Let V be the grammar of a denumerable set of variable symbols
x, y, z, . . ., and let ⋆ be a constant dummy value. Then, the set Λ of terms is generated by
the following grammar.

T ∶∶= ⋆ ∣ V ∣ λV .T ∣ (T T) (2.3)

Definition 2.12 (Term translation). Given t ∈ Λ, let the i-th free occurrence of a variable
x appearing in t to be uniquely indexed with a natural number as x@i, with 1 ≤ i ≤m form
being the number of occurrences. Let Γ be an injection between the variable occurrences
in t and a set of vertices V ′. The translation ⟦t⟧Γ is a mMELL structure whose vertices is
a superset of V ′ and that is defined in Figure 2.2. The actual work is performed by the
pre-translation of t, denoted as jtoΓ , which goes by induction on the syntax of t; whilst

16 2. Lambda-calculus, linear logic and geometry of interaction

Figure 2.2 Pre-translation j o and translation ⟦ ⟧ of λ-terms into mMELL nets

jλx.toΓ = jtoΓ
⊸
v

?

u2

u1

w1 . . .wn

jt soΓ =
⊸̄

jtoΓ
z1 . . . zm

!

jsoΓ
y1 . . . yn

v

u w

y

j⋆oΓ = ★
v ⟦t⟧Γ =

jtoΓ
w

? ?

v1 vl

.

. . .

u11 u1j ul1 ulk

jx@ioΓ = Γ(x@i)

the final step only adds a ?-link linking all occurrences of a given free variable x, for all
free variables of t. More precisely, the (pre-)translation is such that two vertices v, u are
premisses of the same ?-link if and only if Γ−1(v) = Γ−1(u). Since the choice of Γ produce
no change in the translation, we shall omit to specify it.

Proposition 2.1. Any translation is a mMELL proof-net.

Proof. See the detailed work by Regnier [1992, Proposition 3.2.1]. ∎
Definition 2.13 (Variables). The free variables of a proof-net N is the set FVar(N) of in-
vertices of iface(N), whilst BVar(N) is the set of vertices which are connected to the first
premiss of a⊸-link in L(N), and which are called bounded variables. The set of variables
is then FBVar(N) = BVar(N) ∪ FVar(N).

2.3 Proof-net reductions

Here we introduce the ordinary proof-net reduction recalling its most notable properties,
and the closed variant, which acts on a box only if has no secondary doors, proving that
in our setting such restriction causes no loss of generality.

2.3.1 General notions

Notation 2.1 (Rewriting). We fix some quite usual notational conventions and termino-
logy we shall employ for rewriting notions. Given a rewriting relation → on a set A, the
symbols →+ and →∗ respectively denote the transitive and the transitive-reflexive closures
of→. Given a,a ′ ∈ A, if a→ a ′ (resp. a→∗ a ′) we say that there is a rewriting step (resp.
sequence) from the reducendum a to the reduct a ′. Also, if a sequence is made of k steps,

2.3. Proof-net reductions 17

we write→k. We write a /→ and say that a is a normal form, when there exists no a ′ such
that a → a ′. If a →∗ a ′ /→, then we say that a ′ is a normal form of a; if a ′ is unique1we
also write NF(a) = a ′. Reduction steps are named with Greek letters ρ, σ, τ, . . ., and se-
quences with barred letters, so that we can denote the reduct of a with respect to a step ρ
(resp. a sequence ρ̄) as ρ(a) (resp. ρ̄(a)).
Definition 2.14 (Context and pre-substitution). A hole-link is a link with arbitrary arity,
polarity and types. A single-hole pre-context C[], or simply a pre-context, is a pre-net
whose links contains exactly one hole-link h, and whose internal interface is the interface
of h.

A mMELL context is a single-hole pre-context made of mMELL links and equipped with a
typing T and a boxing b. Given a mMELL context C[] and a mMELL pre-net P whose
interface is identical to the internal interface of C[], the pre-substitution of the pre-net in
the context, written C[P], is the pre-net obtained as follows.

1. Replace the hole link in C[] with P.

2. Given a bijection↔ between vertices of the internal interface of C and those of the
interface of P; for any v ∈ C and any v ′ ∈ P, if v↔ v ′, then in C[P] the two vertices
are equated, and we write v≡v ′.

Definition 2.15 (Proof-net reduction). Given a proof-net N and a cut vertex, its redex is a
subnet R ⊆ N containing it, depending on its principal type, so that N = C[R]. For both
type constructors we have, we now define: the shape of a redex R; the relation of reduction
between R and its reduct R ′, for which we write R → R ′; the notion of context-closure of
the relation, i.e. the definition of C[R ′].
Linear implication The redex sub-net is made by the two links insisting on the cut vertex.

Its reduction is depicted in Figure 2.3a and written as:

⟨v ′, v (⊸) w⟩, ⟨u ′, u (⊸̄) w⟩ → [v≡u, v ′≡u ′]. (2.4)

The notation v ≡ u denotes the fact that the vertices v, u have been equated. The
substitution of the reduct in a mMELL contex is simply its pre-substitution.

Exponential In this case, the redex sub-structure R includes not only the two exponential
links ⟨u1, . . . , uk (?) c⟩ and p = ⟨v (!) c⟩, but also the box ⟨W [B] v⟩ that is
connected to the cut !-link, together with the set of every link ⟨Xi (?) yi⟩ such that
there exists w ∈ W that also belongs to Xi. The redex, together with two exempli-
fying boxes C,D which are not part of it, are drawn on the left of Figure 2.3b, the
reduct is on the right, and both are also written as follow.

⟨u1, . . . , uk (?) c⟩, ⟨v (!) c⟩,
⟨W [B] v⟩,

⟨X1 (?) y1⟩, . . . , ⟨Xs (?) ys⟩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
→ ⎧⎪⎪⎨⎪⎪⎩

⟨W1 [B1] u1⟩, . . . , ⟨Wk [Bk] uk⟩,⟨X ′1 (?) y1⟩, . . . , ⟨X ′s (?) ys⟩ (2.5)

1It is the case for all kind of reductions that are considered here.

18 2. Lambda-calculus, linear logic and geometry of interaction

The reduction removes the two cut exponential links, and duplicates B into k copies
(erasing it when k = 0): ⟨W1 [B1] u1⟩, . . . , ⟨Wk [Bk] uk⟩. Also, the boxing b ′ of
the reduct is obtained by the boxing b of R so that the box copy Bh is included in
any box that in R contains vh. More precisely:

1. if p ′ is the !-link of a box B containing uh for some 0 ≤ h ≤ k, then b ′(p ′) =
b(p ′) ∪ Bh;

2. if p ′ ≠ p is the !-link of a box B ′ ⊊ B then b ′(p ′h) = b(p ′), for any 0 ≤ h ≤ k;
3. otherwise b ′(p ′) = b(p ′).

Notice that for any 0 ≤ j ≤ s, the set of premisses of the j-th ?-link containing
auxiliary doors for B is modified by the reduction: the sequence of premisses X ′j
of its reduct is obtained by replacing any occurrence of a vertex w ∈ W with the
sequence (w1, . . . ,wk) such that its elements respectively belongs toW1, . . . ,Wk.

The substitution of the R ′ in C[] is defined as the pre-substitution of R ′ in C, plus
a modification of its boxing so that the sub-net Bi is included to any B ′ containing
vi. Pictorially: observe box borders in the upper part of Figure 2.3b. Formally: if
for some 0 ≤ i ≤ k and according to b(C), we have ui ∈ B ′ ∈ Bxs (N) and z ∈ V(B),
then in the boxing of the reduct b ′(C) we have also zi ∈ V(B ′). In spite of this
detail, we shall abuse the notation and simply write that C[R]→ C[R ′].

The proof-net reduction, also called cut elimination, is the graph-rewriting relation on
mMELL nets obtained by the union of the context closures of the linear implication re-
duction and the exponential reduction.

Proposition 2.2. Any reduct of a proof-net is a proof-net.

We only sketch the main idea of the proof, and address the interested reader to the well-
detailed proof by Regnier [1992, Proposition 4.1.1].

Proof sketch. Consider a reduction step ρ on a redex R ⊂ N and take a switching path
π that is persistent to ρ. Ad absurdum, suppose that ρ(π) is cyclic, and observe that
this would imply that π is cyclic as well, thus contradicting Definition 2.10. Hence ρ(π)
is acyclic. Repeat such argument by induction on the length of the reduction sequence
N →∗ N ′, and obtain the thesis. ∎
Proposition 2.3 (Strong normalisation [Pagani and Tortora de Falco, 2010, Accattoli,
2013]). Any mMELL proof-net N strongly normalises. If N has a unique conclusion vertex
v ∶ T , with T ground, then the normal form of N is ⟨(★) v⟩.

2.3.2 Closed strategy

Closed reduction perform exponential steps only if the box is closed, i.e. has no auxiliary
doors (cf. Definition 2.5).

Definition 2.16 (Closed reduction). The closed reduction, written →cl, is the restriction
of → that for the exponential case requires that the box in a redex to be closed.

2.3. Proof-net reductions 19

Figure 2.3 Proof net reductions
(a) Linear implication

⊸
⊸̄
u

u ′

v
v ′

w → ⋅ v ′≡u ′

⋅ v≡u

(b) Exponential

?

.

u1

C
ui uj

.

!

D
uk

.

!

!

d

!
c

B
W

v

? ?

y1 ys

X1 Xs

. . .

→ u1≡v1
B1

W1

C
.
ui uj

!

Bi

Wi

Bj

Wj

D
.

!

!

d

Bk

Wk

uk≡vk

? ?

y1 ys

X ′1 X ′s

20 2. Lambda-calculus, linear logic and geometry of interaction

Lemma 2.1 (Existence of closed exponential cut). Given amMELL proof-net N ∶ ★without⊸-cuts, either N is cut-free, or N contains an exponential cut on a closed box.

Proof. Given N a mMELL proof-net without ⊸-cuts, let c ∈ V(N) be an exponential
cut such that `(c) = 0, and B be the box whose !-link has conclusion c. We proceed by
induction on the number n of boxes at depth 0 crossed by π, which is finite thanks to the
finiteness of N .

1. If n = 0 then B is closed, so we found a witness and we conclude.

2. If n > 0, let a be the conclusion of a ?-link having a premiss that is an auxiliary
door of B. Consider any straight and consequent path π starting from a. π cannot
reach the conclusion of N , because otherwise the type on N would differ from ⋆
(contradicting such hypothesis). π can neither reach a ⋆-link, since otherwise the
typing of links would be broken somewhere along π (Definition 2.2). Therefore
π must reach a cut vertex c ′, whose depth by hypothesis cannot be smaller than
the depth of c. But the depth of vertices along π can neither increase, because π is
consequent. Therefore `(c ′) = `(c). Morever, it must be the case that c ≠ c ′, since
N is switching cyclic by Definition 2.10. Now repeat the previous reasoning right
from the beginning, using the cut c ′ as our target cut instead of c, and the box B ′
that is associated with c ′ in place of the target box B.

∎
Remark 2.1. Previous Lemma 2.1 holds a little more generally in full MELL, with the
assumption that a proof-net does not contain any ?-link in any subtype of any of its con-
clusions. Such assumption is the same that was firstly used by Girard [1989, Theorem 1,
p. 239], and in our syntactical setting it implies that the only conclusion of the net has
ground type.

Fact 2.1. For any given proof-net N , if N has a normal form N with respect to full mMELL
reduction, then there exist a N →∗

cl N

Proof. The claim follows from normalisation (Proposition 2.3), confluence of the ordin-
ary reduction, and the existence of closed exponential cuts (Lemma 2.1). ∎

2.4 Execution paths

In this section we formalise the notion of execution paths, the action of reduction on them.
Together with the property of persistence, i.e. the ability of resisting to the rewriting, we
show that every path has a unique ancestor. We also present the closed reduction on proof-
nets, which acts on a box only if it is closed, and prove that in this case path reduction
induces a bijection.

2.4. Execution paths 21

2.4.1 Statics

We now introduce two restrictions on the shape of paths that rule out those which, from
a proof-theoretic or computational perspective, we can a priori recognise as meaningless.
We want paths which do not bounce, nor twist in a proof-net. A third restriction is instead
unnecessary, but considerably improve the simplicity and readability.

Except for a cosmetic difference discussed in Remark 2.2, our formulation is essentially a
rework of the presentation given by Danos and Regnier [1995].

Definition 2.17 (Execution paths). Let N be a proof-net and π a paths in N . If there is
no other path π ′ ∈ N such that π ⊆ π ′, where ⊆ is the inclusion ordering on sequences,
then π is maximal. Finally if π is both straight and maximal, then π is an execution path.
We denote with P(N) the set of straight paths in N , whilst PE(N) is the set of execution
paths.

Fact 2.2. If v is the extremum vertex of an execution path π ∈ N , then v is either a conclusion
of N , or the conclusion of a weakening.

Remark 2.2. Most of the previous literature about paths in LL proof-nets uses the notion
of ‘composition’ instead of ‘concatenation’. As a result, the appropriate notation in func-
tional style has been preferred, i.e. writing from right to left. We rather preferred the
cognitive ease to orthodoxy2.

Remark 2.3. For the ease of presentation, we deliberately left a bit of ambiguity in the
path definition. It may happen that, given an ordered pair of vertices, there actually exist
two distinct hyperlink crossings. For instance, consider a pre-net having l = ⟨v (?) u⟩ and
l ′ = ⟨u, v (⊸) w⟩, and a unitary path π = (u, v). What is the link crossed by π? In spite of
this, all the possible ambiguities will be clarified either by the straightness of the paths we
will consider almost everywhere, or by a direct explanation. For instance, again within
the net considered in the previous example, consider π ′ = (w,u, v,w) and notice that, if
π ′ is straight, then there is a unique sequence of links crossed by π ′, i.e. (l ′, l, l ′). Indeed,
the only other possible sequence of links, i.e. (l ′, l ′, l ′), would imply π ′ being twisting.

2.4.2 Dynamics

We now define the action of reduction on paths and the notion of persistence, and show
some elementary properties, the most notable of which is the fact that every path in a
reduct has a unique ancestor.

Definition 2.18 (Redex crossing and sufficient length). Given a reduction step ρ on a
redex R ⊆ N , a redex crossing for R is a straight path χ that is maximal in R. Let ρ be a
reduction step on a redex R in N . A path π ∈ N is long enough if and only if for any vertex
r ∈ π, the fact that r ∈ R and r is not a conclusion of R implies there is a subpath χ ⊆ π that
is a crossing of R, and such that r ∈ χ. If π is long enough for ρ, then there exist n ≥ 0 such
that

π = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn ∶∶ πn,
2.notation favourite its recover easily should writing inverse the with accustomed reader The

22 2. Lambda-calculus, linear logic and geometry of interaction

where for any 0 ≤ i ≤ n the sub-path χi is a crossing for R, whilst πi is not. This unique
form of expressing π is called its redex crossings form for R, and written RCFR(π).
Definition 2.19 (Straight crossing reduction). Let N be a proof-net where χ ∈ P(N) is a
crossing of a redex R, and for which ρ is the reduction step on R. The reduction of R is a
set of paths in ρ(N) defined as follows and denoted as ρ(χ).
Linear implication Let R be as in Figure 2.3a or equivalently, as in Equation 2.4, Then the

residual of χ with respect to ρ, is defined as follows and by the rule ρ(χ†) = (ρ(χ))†.

ρ((v,w,u)) def= {(v)[v≡u]} (2.6)

ρ((v ′,w,u ′)) def= {(v ′)[v ′≡u ′]} (2.7)

ρ((v,w,u ′)) def= ∅ (2.8)

ρ((v ′,w,u)) def= ∅ (2.9)

Exponential Since χ necessarily traverses the box B whose principal door is cut, let β
be the maximal sub-path of χ whose vertices are in B, and let βj be the copy of
β traversing Bj, that is the j-th copy of B. We isolate three kinds of crossings,
depending on the polarities (in or out) of the two extrema of β.

out-out

ρ((uj, c, v) ∶∶ β ∶∶ (v, c, uj)) def= {(uj) ∶∶ βj ∶∶ (uj) [uj≡vj]} ; (2.10)

ρ((uj, c, v) ∶∶ β ∶∶ (v, c, uj ′)) def= ∅. (2.11)

out-in Let 1 ≤ j ≤ k and 1 ≤ l ≤ s. Then

ρ((uj, c, v) ∶∶ β ∶∶ (wl, yl)) def= {(uj) ∶∶ βj ∶∶ (wlj , yl) [uj≡vj]} . (2.12)

in-in Let 1 ≤ l,m ≤ s. Then

ρ((yl,wl) ∶∶ β ∶∶ (wm, ym))
def= {(yl,wlj) ∶∶ βj ∶∶ (wmj , ym) ∣ 1 ≤ j ≤ k}. (2.13)

Definition 2.20 (Path reduction and persistence). Let π ∈ P(N) long enough for a redex
R ⊂ N and suppose

RCFR(π) = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn ∶∶ πn.
The reduction of π with respect to the reduction step ρ on R, written ρ(π), is the function
from paths to sets of paths obtained by concatenation of sets of reducts of any redex
crossing, distributing set membership over path concatenation. Formally:

ρ(π) def= {π0 ∶∶ χ ′1 ∶∶ π1 ∶∶ . . . ∶∶ χ ′k ∶∶ πk ∣ χ ′1 ∈ ρ(χ1), . . . , χ ′k ∈ ρ(χk)}. (2.14)

Observe, in particular, that, if ρ(χi) ≠ ∅ for all 1 ≤ j ≤ n, then also ρ(π) ≠ ∅ and π is
said to not be persistent to ρ. Otherwise ρ(π) = ∅ and π is not persistent to ρ. Moreover,
if for every reduction sequence σ = (ρ1, . . . , ρm), and for every 1 ≤ j ≤ m, the path π is
persistent to ρj, then π is said persistent. In order to make path reduction uniform, we
extend its domain to sets of paths. Given a set of paths Π long enough for R, we then
write ρ(Π) to denote {ρ(π) ∣ π ∈ Π}.

2.4. Execution paths 23

Fact 2.3 (Reduction preserve straightness). For any path π in a proof-net N , and any reduc-
tion ρ, if π is straight then any π ′ ∈ ρ(π) is straight.
Lemma 2.2. Given N mMELL proof-net and ρ reduction step, for any π ∈ PE(ρ(N)) there
exists a unique φ ∈ PE(N) such that π ∈ ρ(φ).
Proof. Let N = C[R], for some redex R and some context C[]. Suppose also that π = π0 ∶∶
χ ′1 ∶∶ π1 ∶∶ . . . χ ′n ∶∶ πn, where, for any 1 ≤ i ≤ k, the subpath χ ′i is a maximal sequence
of vertices belonging to ρ(R). Observe that the extrema of χ ′i necessarily belong to the
interface of ρ(R), because π is an execution path. Now, by definition of reduction, and in
particular as per Equation 2.14, if n = 0 (i.e. π does not cross ρ(R)), then there is nothing
to prove, since by definition of reduction we have that π ∈ PE(N) and ρ(π) = {π}. So,
suppose otherwise that n > 0 and let us discuss χ ′i distinguishing two cases depending on
the kind of the redex.

1. T (R) =⊸/⊸̄. Because of the persistence of π to ρ, and by Equation 2.14, we have
χ ′i ≠ ∅. Let ρ is as in Figure 2.3a. We observe that in this sub-case we have indeed a
bijection:

(a) χ ′i = (v) and ρ(χi) = {χ ′i} if and only if χl = (v,w,u);
(b) χ ′i = (v ′) and ρ(χi) = {χ ′i} if and only if χl = (v ′,w,u ′).

◻
2. T (R) = !/?. Let ρ be as in Figure 2.3b and recall that ρ(R) is made by the subnets

Bj, for any 1 ≤ j ≤ k, that are copies of the box ⟨W [B] c⟩ in R. We distinguish
three sub-cases depending on the polarity of the extrema of π.

(a) out-out. Let χ ′i = (uj) ∶∶ βj ∶∶ (uj) for some 1 ≤ j ≤ k. Then take χi =(uj, c, v) ∶∶ β ∶∶ (v, c, uj), and observe that by definition of reduction (cf. Equa-
tion 2.10) χi is the only crossing of R such that ρ(χi) = {χ ′i}.

(b) out-in. Let χ ′i = (uj) ∶∶ βj ∶∶ (wlj , yl). Then take χ = (uj, c, v) ∶∶ β ∶∶ (wl, yl),
and verify again (cf. Equation 2.12) that χi is the only crossing of R such that
ρ(χi) = {χ ′i}.

(c) Let χ ′i = (yl,wlj) ∶∶ βj ∶∶ (wmj , ym) for some 1 ≤ l,m ≤ s (recall that s is the
number of ?-links having a premiss in Wj ′ for some 1 ≤ j ′ ≤ k). Then take
χ = (yl,wl) ∶∶ β ∶∶ (wm, ym) and inspect Equation 2.13 to verify that χi is the
only crossing of R such that χ ′i ∈ ρ(χi).

∎

2.4.3 Closed dynamics

If the reduction is closed, its dynamics gains elegant symmetries which make path reduc-
tion induce a bijection on execution paths.

24 2. Lambda-calculus, linear logic and geometry of interaction

Proposition 2.4 (Closed reduction is bijective on persistent paths). For anymMELL proof-
nets N ,N ′, and reduction step ρ: N →cl N ′ on a redex R, ρ induces a bijection on the set of
persistent crossings of R and the set of crossings of ρ(R).

Proof. Let π ∈ PE(N) be persistent to ρ, let R the redex of ρ, and suppose RCFR(π) =
π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χk ∶∶ πk. Let 0 ≤ l ≤ k and recall that, by hypothesis of persistence
of π w.r.t. ρ, and by definition given by Equation 2.14, we have that χl ≠ ∅. Moreover,
ρ(π) = π0 ∶∶ ρ(χ1) ∶∶ π1 ∶∶ . . . ∶∶ ρ(χk) ∶∶ πk. There are two reduction rules possibly used by
ρ.

1. T (R) = ⊸/⊸̄. Then, if ρ is as in Figure 2.3, then we immediately find a bijection
between redex crossings and their (persistent) reducts:

(a) χl = (v,w,u) if and only if ρ(χl) = {(v)};
(b) χl = (v ′,w,u ′) if and only if ρ(χl) = {(v ′)}.

2. T (R) = !/?. Suppose the redex R being as in Figure 2.3. By def. of closed reduction,
only the out − out has to be discussed in the exponential case.

Let β be the maximal sub-path of χl that crosses the box B ⊂ R, and let βj be the
copy of β traversing the j-th copy of B. Now, B is closed because we hypothesised
R to be a redex for the closed reduction. Thus, β is necessarily is crossing of kind
out-out. It is then immediate to verify that χl = (uj, c, v) ∶∶ β ∶∶ (v, c, uj) if and only
if ρ(χl) = {(uj) ∶∶ βj ∶∶ (uj) [uj≡vj]}.

Such a bijection holds between χl and ρ(χl), so we also have a bijection between π and
ρ(π). ∎
Remark 2.4 (Bijectivity of paths under non-closed reduction). Observe that every ★-typed
proof-net normalises to ⟦⋆⟧, that is inhabited by a unique straight path. In spite of this,
the reduction of a path containing in-in-crossings is a set of paths, whilst the only kind of
crossing able to “kill” paths is the out-out one. One may therefore wonder if there are any
superfluities in the definition of path reduction that could be cleared. The bijection we
proved to relate persistent paths under closed reduction (i.e. Proposition 2.4) holds indeed
more generally for ordinary reduction. The reason is that, roughly speaking, somewhere
in the net there necessarily exists at least one ?-link which will interact with the box at
some point of any normalisation sequence. Morally, all those links will split the set in
smaller and smaller partitions up to singletons. Thus, if one would accept to lose locality
of the definition by considering the whole path starting from the root of the net, then he
could also find the complete sequence of ?-premisses that are crossed before reaching the
in-in crossing of interest, because such a sequence identify the unique image of the reduct
crossing. The introduced complexity surpasses as largely as regrettably the beauty of the
earned property.

2.5. Computation as path execution 25

2.5 Computation as path execution

2.5.1 Dynamic algebra

Definition 2.21 (Dynamic algebra). The L∗ monoid is defined over terminal symbols
in {0,1,p,q,l,r,t,d,⋆}, where p,q are called multiplicative symbols, and l,r,t,d are
called exponential symbols. A word of its alphabet, called weight, is generated by a binary
concatenation operator with infix implicit notation and two unary operators: the adjoint(⋅)∗, and the exponential !(⋅) The concatenation operator and the set of symbols has the
structure of a monoid, whose identity element is 1, equipped with an additional absorbing
element 0. If a, b, c are generic weights:

a(bc) =(ab)c (2.15)
a1 = 1a = a (2.16)
a0 = 0a = 0 (2.17)

Moreover, similarly to an adjoint, the inversion operator is involutive and distributes over
concatenation by reversing left and right operands.

(a∗)∗ = a (2.18)
(ab)∗ = b∗a∗ (2.19)

The exponential operator, instead, commutes over concatenation and inversion:

!0 = 0 (2.20)
!1 = 1 (2.21)

(!a)∗ =!(a∗) (2.22)
!(a)!(b) =!(ab) (2.23)

and also satisfies two swap and two lift equations interacting with exponential symbols:

l!(a) =!(a)l (2.24)
r!(a) =!(a)r (2.25)
t!(a) =!!(a)t (2.26)
d!(a) = ad (2.27)

Finally, the core of the computation is encoded by the neutralisation and annihilation
equations.

pp∗ = qq∗ = ll∗ = rr∗ = tt∗ = dd∗ = 1 (2.28)
qp∗ = pq∗ = rl∗ = lr∗ = 0 (2.29)

We say that c ∈ L∗ is positive if c does not contain the inversion operator, and that it is
in stable form if c = a ⋅ (b)∗ with a, b ∈ L∗ are positive. When we need to distinguish
L∗-equality from syntactic equality, we write =L∗ for the former and = for the latter. We
shall denote t . . .t²

n

as tn, d . . .d²
n

as dn, ! . . .!±
n

(a) as !n(a), and l r . . .r²
m

as em.

26 2. Lambda-calculus, linear logic and geometry of interaction

Fact 2.4. The following equations are derivable:

tn!m(a) =!m+n(a)tn (2.30)
dn!m(a) =!m−n(a)dn with n ≤m (2.31)
!m(a)t∗n = t∗!m+n(a) (2.32)
!m(a)d∗n = d∗!m−n(a) with n ≤m (2.33)

ene
∗
n = 1 (2.34)

ene
∗
m = 0 with n ≠m (2.35)

Definition 2.22 (Path weighting). The base weighting is a mapw that associate a weight of
rL∗ to an atomic straight path π = (u, v) ∈ P(N). Straightness implies that it goes either:
(i) from a conclusion to a conclusion of a ⋆-link; (ii) from a premiss to a conclusion of a
binary link; (iii) vice versa, from a conclusion vertex to a premiss of a binary link. The
base weighting is defined as follows, where the first clause covers (i), the clauses from the
second to the fifth cover (ii), and the last clause covers (iii).

w((u, v)) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋆ if there is ⟨(★) u⟩ and u = v
p if there is ⟨u,w (⊸) v⟩ or ⟨u,w (⊸̄) v⟩
q if there is ⟨w,u (⊸) v⟩ or ⟨w,u (⊸̄) v⟩
1 if there is ⟨u (!) v⟩
dtnei if there is ⟨u1, . . . , ui, . . . , uk (?) v⟩,

n = `(ui) − `(v), and ui = u
(w((v, u)))∗ otherwise.

(2.36)

If n is the depth of the link l crossed by π, then the deepened weighting is w̄(π) = !nw(π).
The path weighting is the lifting of the deepened weighting map from unitary straight path
to generic straight paths.

w (∅) = w (v) def= 1 (2.37)

w ((u, v) ∶∶ π) def= w̄(u, v)w (π) (2.38)

Fact 2.5. For any paths π,π ′, path concatenation ∶∶ and path reversal ()† commute with their
respective algebraic operators ⋅ and ()∗.

w (π†) = (w (π))∗ (2.39)
w (π ∶∶ π ′) = (w (π)w (π ′)) (2.40)

Definition 2.23 (Regularity and execution). Given a proof-net N , if π ∈ P(N) is both
straight and maximal, then is called an execution path. The set of execution paths of N is
denoted by PE(N). If w (π) ≠ 0, then π is regular. The execution of N , written Ex(N),
is the sum of the weights of all the execution paths of N , where the sum forms a free
commutative monoid on the rL∗ structure, and its identity is 0. Formally:

Ex(N) def= ∑
π∈PE(N)w (π) , (2.41)

2.5. Computation as path execution 27

moreover, for any a, b, c ∈ (rL∗,+):
(a + b) + c = a + (b + c) (2.42)

a + b = b + a (2.43)
a + 0 = a (2.44)

Proposition 2.5 (Stability). Every element in L∗ has a unique stable form.

Proof sketch. Let →L∗ be the rewriting system obtained by orienting the equations of L∗
from left to right. It is locally confluent and terminating. ∎

2.5.2 Equivalence of execution and reduction

Lemma 2.3. Given a proof-net N ∶ ★, and a closed-reduction step ρ, if π ∈ PE(N) then:
w (π) =L∗ w (π ′) if ρ(π) = {π ′} (2.45)
w (π) =L∗ 0 if ρ(π) = ∅ (2.46)

Proof. Let R be the redex of ρ, and recall that maximality of π implies that it is long
enough for ρ. So, let

RCFR(π) = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn ∶∶ πn, (2.47)

where for any 0 ≤ i ≤ n, χi is a crossing, and πi is not. By Fact 2.5, we know the L∗
concatenation operator commutes with path concatenation, so:

w (π) = w (π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn) (2.48)
=L∗ w (π0)w (χ1)w (π1) . . .w (χn)w (πn) . (2.49)

Now, by Definition 2.20 of closed reduction of path, we already know that ρ(πi) = {πi}
with πi = π ′i. Hence trivially w (π ′i) = w (πi) and

w (π) = w (π ′0)w (χ1)w (π ′1) . . .w (χn)w (π ′n) . (2.50)

Thus, we only miss to prove that: if ρ(χi) = {χ ′i} then w (χi) =L∗ w (χ ′i); whilst when
ρ(χ) =, then w (χ) =L∗ 0. We proceed by case analysis on the kind of cut of ρ.

1. Rule ⊸ /⊸̄. Let R as in Figure 2.3a. Because of the locality of the reduction step,
we can simply consider all the possible crossings, that are four sub-cases (cf. Equa-
tion 2.6, 2.7, 2.8 and 2.9).

(a) If χi = (v,w,u) then we have ρ(χi) = {χ ′i} with χ ′i = (v≡u), and
w (χ) = pp∗ =L∗ 1 =L∗ w (χ ′i)) (2.51)

(b) If χ = (v ′,w,u ′) then we have ρ(χi) = {χ ′i} with χ ′i = (v ′≡u ′), and
w (χ) = qq∗ =L∗ 1 = w (χ ′i) (2.52)

28 2. Lambda-calculus, linear logic and geometry of interaction

(c) If χi = (v,w,u ′) then ρ(χi) = ∅ and

w (χ) = pq∗ =L∗ 0 (2.53)

(d) If χi = (v ′,w,u) then ρ(χi) = ∅ and

w (χ) = qp∗ =L∗ 0 (2.54)

2. Rule !/?. In this case we need a non-local reasoning and exploit the fact that, by
definition of closed reduction (cf. Definition 2.16), the box B ⊂ R is closed. This
fact, together with the maximality of χ for R, implies that χi enters B if and only
if it exits from B, and also that every entrance and exit necessarily happens in the
principal door of B. Let R as in Figure 2.3b. In particular let χi = (uj, c, v) ∶∶ β ∶∶(v, c, uj ′), where uj is a generic premiss of the ?-link of R (i.e. not necessarily as in
the figure). Notice preliminarily that the ?-link cannot have an empty sequence of
premisses, since no straight path traversing the redex can possibly be maximal (cf.
Figure 2.3b where k = 0). Also, let l = `(uj) − `(c), and l ′ = `(uj ′) − `(c). Consider
the weight of χi.

w (χi) = dtlej !(b) e∗j ′t∗l ′d (2.55)
=rL∗ dtl !(b) eje∗j ′t∗l ′d swapping on e (2.56)

We distinguish two cases depending on the emptiness of ρ(χi).
(a) If ρ(χi) ≠ ∅, let ρ(χ ′i). Then by Definition 2.19 and in particular by Equa-

tion 2.10 it must be the case that j = j ′, which implies that also l = l ′. There-
fore:

w (χi) =rL∗ dtl !(b) t∗l d∗ neutralisation on e (2.57)
=rL∗ d !1+l(b) tlt∗l d∗ lifting on t (2.58)
=rL∗ d !1+l(b) d∗ neutralisation on t (2.59)

But by definition of path reduction: χ ′i = (uj) ∶∶ βj ∶∶ (uj). Therefore we
conclude:

= w (χ ′i) . (2.60)

(b) If ρ(χi) = ∅ then by Definition 2.19 and Equation 2.11 we have j ≠ j ′. Thus:

w (χi) =rL∗ dtl !(b) 0t∗l ′d∗ annihilation on e (2.61)
=rL∗ 0. absorbtion on 0 (2.62)

∎
Lemma 2.4. Given a proof-net N ∶ ★, and a closed-reduction sequence ρ̄, if π ∈ PE(N) then:

w (π) =L∗ w (π ′) if ρ̄(π) = {π ′} (2.63)
w (π) =L∗ 0 if ρ̄(π) = ∅ (2.64)

Proof sketch. Lemma 2.3 proved the claim for a single step of reduction. A straightforward
induction on the length of the sequence ρ̄ suffices to generalise. ∎

2.5. Computation as path execution 29

Theorem 2.1 (Execution invariance). For any proof-net N ∶ ★ and a reduction sequence ρ̄,

Ex(N) =L∗ Ex(ρ̄(N)). (2.65)

Proof. Since closed reduction is normalising (Fact 2.1), let ρ̄ be a closed-normalisation
such that ρ̄ ∶ N →∗

cl NF(N). Take π ∈ PE(N) and recall that π is by definition long
enough for all possible reductions, including ρ̄. So, by Lemma 2.4, if π is persistent to ρ̄
then w (π) =L∗ w (ρ̄(π)), otherwise w (π) =L∗ 0. Recall also that by Proposition 2.4, ρ̄
induces a bijective relation on persistent maximal paths, therefore Ex(N) = Ex(NF(N)).
Let ρ̄ ′ be a closed-normalisation on N ′ which, by confluence of closed reduction, is such
that ρ̄ ′ ∶ N ′ →∗

cl NF(N). If we repeat the reasoning above for PE(N ′), we obain that
Ex(N ′) = Ex(NF(N)). Therefore the claim. ∎
Theorem 2.1 of equivalence implies the usual weaker results about GoI for MELL [Regnier,
1992, Théorème 2.2.1, p. 85] [Danos and Regnier, 1995, Theorem 14, p. 325].

Corollary 2.1 (Regularity and persistence). For any proof-net N and any path π ∈ PE(N),
π is persistent if and only if π is regular.

30 2. Lambda-calculus, linear logic and geometry of interaction

Part I

Superposition and expansion

Chapter 3

Geometry of Resource
Interaction

Contents

3.1. Introduction 34

3.2. Resource calculus 34

3.2.1 Syntax 35

3.2.2 Reduction 35

3.3. Resource interaction nets 36

3.3.1 Definition 37

3.3.2 Term translation 38

3.3.3 Reduction 39

3.4. Resource paths 45

3.4.1 Statics 45

3.4.2 Dynamics 46

3.4.3 Comprehensiveness and bijection 48

3.4.4 Confluence and persistence 51

3.5. Resource execution 54

34 3. Geometry of Resource Interaction

3.5.1 Dynamic algebra and execution 54

3.5.2 Invariance and regularity 57

3.6. Discussion 60

3.6.1 Related works 60

3.6.2 Open questions 61

3.6.2.1 Higher expressivity 61

3.6.2.2Geometry of differential interaction 61

3.1 Introduction

In this chapter, we consider the resource calculus and its translation into interaction nets,
called resource nets, where we develop a quite simple theory of their paths. A suitable re-
striction of the mMELL algebra is showed to be an extremely concise and precise semantics
for the resource calculus.

The material here presented originally appeared in EPTCS [2015].

3.2 Resource calculus

The resource calculus (RC) is, on one hand, a linear and thus finitary restriction of the
λ-calculus: in the application t S the function t must use exactly once each s belonging to
the multiset of arguments S, i.e. s cannot be duplicated nor erased, so reduction enjoys
strong normalisation. On the other hand, RC represent a non-deterministic extension
of the λ-calculus, since arguments are now finite multisets of ordinary terms. Therefore,
the reduct of t S is defined as the superposition, i.e. a sum, of all the possible ways of
substituting each s ∈ S. In particular, the number of arguments provided to a function
can be insufficient or excess the function’s request, i.e. the number of occurrences of the
variable bounded by the abstraction under consideration. In this case, computation is
deadlocked and the application reduces to 0, i.e. the empty sum.

3.2. Resource calculus 35

3.2.1 Syntax

Definition 3.1 (Simple resource terms and polyterms). The set ∆ of all the simple terms
and the set ∆! of all simple poly terms are inductively generated by the following grammar.

V ∶∶= x, y, z, . . . variables (3.1)
M ∶∶= ⋆ ∣ V ∣ λV .M ∣ (M B) simple resource terms (3.2)
B ∶∶= 1 ∣ [M] ∣ B ⋅B simple resource polyterms (3.3)

V is a denumerable set. ⋆ is the constant dummy value. Brackets delimit multisets
(or bags), the multiset sum (associative and commutative) is expressed in multiplicative
notation with the central dot ⋅, whose neutral element is the empty multiset 1. So that([x] ⋅ 1) ⋅ [y] = [x, y] is a simple polyterm. Simple terms are denoted by lowercase Latin
letters s, t, u, . . ., polyterms by uppercase S, T,U, The set N⟨∆⟩ of terms (resp. the set
N⟨∆!⟩ of polyterms) is the set of linear combinations of simple terms (resp. polyterms)
having coefficients in the semiring of natural numbers N . All syntactic constructors of
simple terms and polyterms to be extended to sums by (bi-)linearity, i.e. to commute with
sums.

λx.(T + S) def= λx.T + λx.S (3.4)

(s + t) U def= (s U) + (t T) (3.5)

s (T +U) def= (s T) + (s U) (3.6)

[S + T] ⋅U def= [S] ⋅U + [T] ⋅U (3.7)

In order to increase readability and simplicity, in the rest of the chapter we shall omit the
“resource” qualification in the calculus nomenclature.

Example 3.1. A non-simple term could be written as (λx.(2x + y))[z2 + 4u] to mean:
2(λx.x)[z, z] + 8(λx.x)[u] + (λx.y)[z, z] + 4(λx.y)[u].
Remark 3.1. The set of resource (poly-)term was defined by Ehrhard and Regnier [2003]
as the finite sums over a generic commutative unit-equipped semiring R, even if they
preferred to restrict it to N. Indeed, whenever R admits negative elements, showed Vaux
[2007], strong normalisation of the reduction is lost.

3.2.2 Reduction

Definition 3.2 (Context, redex and reduction). A simple context c(⋅) is a term of the
following grammar.

C ∶∶= (⋅) ∣ λV .C ∣ C B ∣ M [C]⋅B (3.8)

A context C(⋅) is a sum of a simple context and a polyterm. A completion of a context C(⋅)
with a term t, written C(t), is the substitution of the hole (⋅) within C(⋅) for t, possibly
capturing variables.
A redex is a simple term of the form: (λx.s)T . Let the i-th free occurrence of x appearing
in s to be uniquely indexed with a natural number as x@i, with 1 ≤ i ≤m for m being the
number of occurrences. The reduction is the relation → between polyterms obtained by

36 3. Geometry of Resource Interaction

the context closure and the linear extension to sum of the following elementary reduction
rule.

(λx.s) [t1, . . . , tn] →
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

σn∈Sn
s {t1/x@σn(1), . . . , tn/x@σn(n)} if n =m

0 if n ≠m (3.9)

Where Sn denotes the set of permutations over the set {1, . . . , n}, and {t/x} is the usual
capture-avoiding substitution.

Example 3.2. Let I = I ′ = λx.x@1 and also let t = λf.f@1[f@2[⋆]]. Then we have:

t[I, I ′]
→ f1[f@2[⋆]]{I/f@2, I ′/f@2} + f1[f@2[⋆]]{I/f@2, I ′/f@1}= I[I ′[⋆]] + I ′[I[⋆]]
→2 I ′[⋆] + I[⋆]
→2 2⋆
= NF(t[I, I ′])

Note also a case of annihilation in t[I] → 0. Finally, observe that if s = (λx.⋆)T → ⋆ then
T must be 1, otherwise s→ 0.
Proposition 3.1. (Ehrhard and Regnier [2003]) Resource reduction is confluent and strong
normalising.

3.3 Resource interaction nets

From an operational point of view, a net can be seen as a graphical, finer representation
of typed terms by means of a variation of the syntax of linear logic proof-nets. From a
proof-theoretic point of view, a net is a proof of a minimal, propositional, promotion-free
fragment of differential linear logic [Ehrhard and Regnier, 2006a]. The negative expo-
nential links have a symmetrical dual but is deprived of promotion, so that it merely
represents superposition of proofs and contexts.

Differential interaction nets (DINs) were introduced by Ehrhard and Regnier [2005] as
the graphical computational counterpart of a calculus that is not precisely the differential
λ-calculus [2003] (that would be the differential nets (DNs) Tranquilli [2011]), but instead
the resource λ-calculus, the latter being a promotion-free restriction of the former. Avoid-
ing this confusion is the reason for adopting, in our nomenclature, the term “resource in-
teraction nets”. The syntax of (DINs) has two unary links, dereliction and co-dereliction;
two binary links, contraction and co-contraction; and two zero-ary links, weakening and
co-weakening. Resource nets are a restriction of DINs, formulated with the “so-called”
nouvelle syntaxe, where exponential links’ arities are factorised to arbitrary arity. The
presentation, firstly employed in this setting by Mazza and Pagani [2007] is not just much
more compact, since the less are the links, much less are the reduction rules of the system,
but it also enables us to nimbly reason modulo associativity, for we have it built-in for
free.

3.3. Resource interaction nets 37

Figure 3.1 Links: kind, arity and polarity associated to vertices, in both graphical and
textual notations. From left to right: constant, abstraction, application, co-contraction
(or co-weakening when n = 0), contraction (or weakening when n = 0).

★
vout

⟨(★) vout⟩

⊸
vout

uin2uout1

⟨uout1 , uin2 (⊸) vout⟩

⊸̄
uout2

uin1vin

⟨uin1 , uout2 (⊸̄) vin⟩

!

vout

uin1 uinn
. . .

⟨uin1 , . . . , uinn (!) vout⟩

?

uout1 uoutn

vin

. . .

⟨uout1 , . . . , uoutn (?) vin⟩

3.3.1 Definition

Our presentation of resource nets employs a concise syntax [Mazza and Pagani, 2007]
which belongs to the tradition of the so-called nouvelle syntaxe for linear logic proof-
nets, and many technical solutions are inspired by Tranquilli’s careful work [2011] on
the more general setting of differential nets, that includes also promotion rule and boxes.
Following the traditional presentation we employed also in Section 2.2, we define first the
pre-nets as a mere hypergraph-like structure, from which we obtain the nets by imposing
a geometrical, path-based property — the correctness criterion. Comparing our criterion
to the one for mMELL proof-nets (see Definition 2.10), and to the original one, discovered
by Danos and Regnier [1989] to characterise proof-nets of the multiplicative fragment of
linear logic, we begin to observe how close resource nets are to multiplicative ones.

Definition 3.3 (Resource links and pre-nets). A resource link is a link (cf. Definition 2.1)
that has kind in {★,⊸, ⊸̄, !, ?} and whose arity and assigned polarities are determined
by the link’s kind, as shown in Figure 3.1. A simple resource pre-net N is a pre-net (see
Definition 2.3, but also Definition 2.2) whose links are resource links. A pre-net P of
interface I is a linear combination c1P1 + . . .+ cnPn of simple pre-nets on the semiring N,
where for any 1 ≤ i ≠ j ≤ n we have V(Pi) ∩ V(Pj) = ∅; moreover, there exists a bijection∼ such that if I(Pi) ∼ I(Pj) and (vi,T (vi),p(vi)) ∼ (vj,T (vj),p(vj)) where vi ∈ C(Pi)
and vj ∈ C(Pj), then T (vi) = T (vj) and p(vi)) = p(vj)). We shall simply use 0 to denote
each of the empty sums of pre-nets having the same interface I, for every interface I. Let
P = c1P1 + . . . + cnPn and Q = d1Q1 + . . . + dmQm be two pre-nets. We say the two
pre-nets to be equal, written P = Q, when n = m and there is a bijection ∼ between the
non-zero addends of P and those of Q such that if ciPi ∼ djPj, for some 1 ≤ i ≤ n and
1 ≤ j ≤m, then ci = dj and Pi ≃ Qj.
Definition 3.4 (Resource net). A simple resource net is a simple resource pre-net whose
switching paths are acyclic (cf. Definition 2.9). A resource net is resource pre-net whose
addends are simple resource nets. In the rest of the chapter we shall omit the “resource”
qualification in the nomenclature of nets, as we did for terms.

Remark 3.2. (Sum’s syntax and superposition) The first syntax for resource calculus in
the form of interaction nets [Lafont, 1990] was indirectly given by Ehrhard and Regnier
[2005], where they defined the more general system of Differential Interaction Nets. Their
formal sum of simple nets was formulated as an actual superposition of vertices and arcs
(a single vertex may belongs to many simple nets), while our definition explicitly im-
poses disjointness of any two addends. While Ehrhard and Regnier’s formulation is more

38 3. Geometry of Resource Interaction

appealing, since it is conceptually closer to the abstract notion of sum as a superposing
operator, their formalisation suffers of two non negligible issues we preferred to avoid.
Firstly, the intuitive definition of path, i.e. a sequence of vertices, does not work in a sum
of simple nets. Indeed, without additional constraints, a path would be allowed, from a
given addend, to enter a superposed sub-net and then exit in another addend. Secondly,
the behaviour of nets reduction as a rewriting system becomes critically more involved
and less expressive. Indeed, with actual superposition, the reduction easily breaks many
of valuable properties of interaction nets. For instance, the length of any two reduction
sequences between two given nets may differ, and a redex in a simple net is no more neces-
sarily orthogonal to a redex in another addend (as we will show in Proposition 3.5). Even
when such a complexity is correctly managed (albeit not effortlessly), the standard notion
of reduction turns out to implement a sort of parallel reduction, since it simultaneously
acts on all addends sharing a superposed redex, and consequently narrowing its expressive
potential. A notable resemblance with this notion can be remarked in Chapter 4, about
Taylor-Ehrhard expansion, where we shall define a notion reduction that acts in parallel
on any redex that belong to the expansion of the same mMELL redex (Definition 4.7).

3.3.2 Term translation

Resource terms can be mapped into resource nets using the well known call-by-name
translation. Similarly to what happens translating λ-terms into mMELL proof-nets, the⊸-link is used for translating λ-abstraction, the ⊸̄-link for application, and the ?-link for
contracting together all the occurrences of the same variable. In addition to this, we use
the generalised !-link for polyterm, and formal sum of nets for. . . formal sum of terms.

Definition 3.5 (Term translation). Let t be a simple term, and Γ an injection between the
variable occurrences in t and a set of vertices V ′. The simple pre-translation of t, denoted
as jtoΓ , is the simple pre-net defined in Figure 3.2 by induction on the syntax of t and by
the following constraint. Two vertices v, u are premisses of the same ?-link if and only if
Γ−1(v) = Γ−1(u). The simple translation ⟦t⟧Γ is a pre-net whose vertices is a superset of V ′
and, again in Figure 3.2, which finalises the pre-translation by adding a ?-link connecting
all occurrences of a given free variable x, for all free variables of t. Since the choice of Γ
produce no change in the translation, we shall omit to specify it.

The translation is the extension of the simple translation to linear combinations.

⟦c1t1 + . . . + cntn⟧ def= c1 ⟦t1⟧ + . . . + cn ⟦tn⟧ , (3.10)

where we recall that for any 1 ≤ i ≠ j ≤ n it must be the case that V(⟦ti⟧) ∩ V(⟦tj⟧) = ∅.

The translation is well defined, since its domain is the set of nets. A converse property,
more weakly stated about translation and reduction, is presented later in Proposition 3.4.

Proposition 3.2. The translation of a term is a simple net.

Proof. Omitted. It suffices to adapt, or to restrict, in fact, the ordinary proof for the
homologous proposition for ordinary λ-terms and proof-nets of the multiplicative and
exponential fragment of linear logic. (See Proposition 2.1.) ∎

3.3. Resource interaction nets 39

Figure 3.2 Simple pre-translation j o and simple translation ⟦ ⟧ of simple terms into simple
nets.

j⋆oΓ = ★
v

jx@ioΓ = Γ(x@i)

jλx.toΓ = jtoΓ
⊸
v

?

u2

u1

w1 . . .wn

j[s1, . . . , sn]oΓ =
js1oΓ . . . jsnoΓ

!

v

u1 . . . un

w1 . . .wn z1 . . . zn

jt SoΓ = jtoΓ jSoΓ
⊸̄
v

u w

y1 . . . yn z1 . . . zn

⟦t⟧Γ =
jtoΓ
w

? ?

v1 vl

.

. . .

u11 u1j ul1 ulk

Remark 3.3. A naive generalisation of the previous result is not possible. A net translation
is always defined for simple terms, while it is not for general terms, because of possible
incompatibility in the interfaces of translated addends.

3.3.3 Reduction

Definition 3.6 (Resource permutations). Given a simple pre-net P, a resource permutation
σP is a function from the set of !-links in P, to ⋃n∈NSn, where Sn is the group of
permutations over the set {1, . . . , n}, such that: if a !-link l has arity m, then σP(l) is an
element σm of Sm. We shall write σl for σP(l) and denote the set of resource permutation
of P as SP . In particular, if P contains no !-links, then SP is an empty function and the
empty set its codomain.

Definition 3.7 (Contexts). A simple resource context C[] is a single-hole pre-context (see
Definition 2.14) made of resource links, and a resource context C[] is the sum of a simple
resource context C and a resource pre-net P.

Given P a simple pre-net and C[] a simple context with hole link h, the substitution of the
former in the latter, written C[P], is defined whenever the interface of P is the same as the
internal interface of C[], and is equal to the pre-substitution C[P] (see Definition 2.14)
which replaces P for h. The substitution of non-simple nets is the extension to linear
combinations:

C[0] def= 0; (3.11)

C[cP + P] def= cC[P] + C[P]; (3.12)

C[P] def= C[P] + P, when C[] = C[] + P. (3.13)

We stress that in rightmost side of (3.12) the two copies of C are distinct, since sums of

40 3. Geometry of Resource Interaction

Figure 3.3 Reduction rules: linear implication and exponential.

⊸
⊸̄
u

u ′

v
v ′

w →r ⋅ v ′≡u ′

⋅ v≡u

?

!

v1 . . . vn

u1 . . . um

w n=m−−→r ∑
σn∈Sn

⋅ v1≡vσn(1) . . . ⋅ vn≡vσn(n)0 r
n≠m←−−

simple pre-nets are always disjoint.

Definition 3.8 (Redex and reduction). Recall that a vertex w in a simple pre-net is a cut
if it the conclusion of two links l, l ′. The redex of w is the pair l, l ′. The reduction →r
is the graph-rewriting relation on pre-nets defined by closing with respect to contexts the
relation given by the two elementary rules that we are going to define, which maps simple
pre-nets into pre-nets. Namely, if according to the elementary rules P →r P (where P

may be a simple net), then C[P] →r C[P], for any context C[]. We shall write [v ≡u]
to denote as usual the fact that the two vertices have been equated. Other notational
conventions about rewriting have been previously fixed in Notation 2.1.

Linear implication Identically to mMELL case (see Definition 2.15), the redex reduction is
defined as follows and depicted on the left of Figure 3.3.

⟨v ′, v (⊸) w⟩, ⟨u ′, u (⊸̄) w⟩ →r [v ′≡u ′, v≡u]. (3.14)

Exponential This case introduces a sum of simple resource nets spanning over any possible
permutation between in and out premisses of the involved links and is empty in case
of a mismatch. It is formally drawn on the right of Figure 3.3 and textually written
as follows.

⟨v1, . . . , vn (!) w⟩, ⟨u1, . . . , um (?) w⟩
→r

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

σn∈Sn
[v1≡vσn(1), . . . , vn≡uσn(n)] if n =m;

0 if n ≠m.
(3.15)

We can now appreciate not only the well-definedness of reduction, but also its expressivity.
We outline, along one direction, that the reduction preserve the definition of RINs, i.e. a
reduct is a net. Conversely, we see that any RIN is obtainable from the translation of a
resource λ-term by reflexive and transitive closure of reduction.

3.3. Resource interaction nets 41

Proposition 3.3. The reduct of a net is a net.

Proof sketch. Consider a reduction step ρ on a redex R in a net N , and take a switching
path π that is persistent to ρ. Ad absurdum, suppose that ρ(π) is cyclic, and observe that
this would imply that π is cyclic as well, thus contradicting Definition 3.4. Hence ρ(π)
has to be acyclic and ρ(N) is a net. ∎
Proposition 3.4. For any net N there exists a (poly-)term t such that ⟦t⟧→∗ N .

Proof sketch. From a proof-theoretic point of view, RINs are very close to the minimal
multiplicative fragment of LL. Then, standard sequentialisation techniques developed for
the latter can be easily applied here.
We can go by induction on the number of addends appearing in N . For any N in N it is
possible to infer at least one sequence of anti-reduction that goes back to a net N ′ which
contains no exponential redexes. It is then viable to go by structural induction on N ′ by
considering, at each step, the link l ∈ L(N) (if any) that is connected with the root of
N (i.e. its unique out conclusion). In the inductive steps, one necessarily find that l is
either a ⊸ or a ⊸̄ link. Moreover, because of typing constraints, the first premiss of l is
necessarily the conclusion of an exponential link l ′, respectively of kind ? or !. These two
cases correspond to the two key rules of pre-translation, hence the inductive step can be
proved by inductive hypothesis on all sub-nets of the net obtained by removing l, l ′ from
N ′. ∎
Example 3.3. Consider δ = λx.(x@1[x@2]) and notice ⟦δ⟧ is not defined, because of the
lack of adequate typing function. Recall the terms I = λx.x@1 and t = λf.(f@1[(f@2[⋆])])
from Example 3.2; we now explain Figure 3.4, which shows the translations of these terms
as nets, and provides an example of net reduction. Above on the left: ⟦I⟧ is closed and⟦I⟧ ∶ !⋆ ⊸ ⋆. On the right: N ∶ ⋆ is not a translation of a term, but it is a net, because⟦t[x, y]⟧→ N by eliminating a linear implication cut. Also, N is not a closed net, because
it has three conclusions: v1, z1, z2. Below: an exponential reduction step involving index
permutation, that rewrites N as a sum of two normal simple nets. In order to stress the
fact that addends do not share vertices, those of the rightmost addend have been labelled
differently from the leftmost one. Observe the reduct is equal to ⟦x[y[⋆]] + y[x[⋆]] ⟧.
Consider ⟦λf.f@1[f@2[⋆]][I, I]⟧, that is a closed net of type ⋆, and observe the reduct
M of the only linear implication cut that is depicted in Figure 3.5 (with the same vertex
notation as before). The normalisation requires: one exponential step (above), two linear
implication steps per addend (below), and finally two other exponential steps per addend
(omitted) to reach the net ⟨(★) v1≡v8⟩ + ⟨(★) v ′1≡v ′8⟩ = ⟦2⋆⟧.
Lemma 3.1. Given a closed net N , let v ∈ V(N) that is not a cut, nor in C(N). Then v is the
conclusion of an exponential link if and only if v is the first premiss of a multiplicative link.

Proof. Given Proposition 3.4, we can proceed by induction on the length of the reduction
sequence ρ̄ ∶ ⟦t⟧→∗ N , for some term t.

1. Base. Suppose ∣ρ̄∣ = 0. Observe first, that the syntax of terms (Definition 3.1) and the
typing constraints (Definition 2.2,) of their translation into nets (Definition 3.5),

42 3. Geometry of Resource Interaction

Figure 3.4 Example: nets and reduction.

⟦I⟧ = ⊸
w1

?

w2

w3

N =

v1

⊸̄
!

⊸̄
?

!

!

★
z2 z1

v2

v4

v5

v6
v7

v3 v8

N →r

v1

⊸̄
!

⊸̄
!

★
v2≡z2 v6≡z1

v4

v5

v7

v8

+

v ′1
⊸̄

!

⊸̄
!

★
v ′6≡z ′2 v ′2≡z ′1

v ′4

v ′5
v ′7

v ′8

3.3. Resource interaction nets 43

Figure 3.5 Example: net reductions. Lowermost reduction is made of four steps, two on
each addend.

⊸
?

w2

w3

⊸
?

z2

z3

v1

⊸̄
!

⊸̄
?

!

!

★

v2

v4

v5

v6
v7

v3 v8

w1
z1

→r
⊸
?

w2

w3

⊸
?

z2

z3

v1

⊸̄
!

⊸̄
!

★

v2≡w1

v4

v5

v6≡z1 v7

v8

+

⊸
?
w ′2
w ′3

⊸
?
z ′2
z ′3

v ′1
⊸̄

!

⊸̄
!

★

v ′2≡z ′1
v ′4

v ′5
v ′6≡w ′1 v ′7

v ′8

→4

v1≡w2

?

!

?

!

★

w3≡v4
v5≡z2
z3≡v7
v8

+

v ′1≡z ′2
?

!

?

!

★

z ′3≡v ′4
v ′5≡w ′2
w ′3≡v ′7
v ′8

44 3. Geometry of Resource Interaction

forces ⟦t⟧ to have the out conclusion r typed either with ⋆ or with⊸, otherwise t
would be a polyterm, contradicting the hypothesis. Therefore, a vertex that is the
conclusion of an exponential link or the first premiss of a multiplicative one, cannot
be r, nor any another in conclusion of ⟦t⟧, because, since ⟦t⟧ is closed, there are
not. Secondly, an immediate verification of the definition of translation shows that
the statement holds for ⟦t⟧, since: a ⊸-link and a ?-link are introduced when pre-
translating an abstraction; a ⊸̄-link and a !-link are introduced when pre-translating
an application and the polyterm; and in both cases the statement holds.

2. Step. Suppose ∣ρ̄∣ > 0 and let ρ = ρ ′ρ̄ ′′, for some reduction sequence ρ̄ ′′, and for some
step ρ ′ of our interest acting on a redex R. For any z ∉ R the inductive hypothesis
(IH) is trivially preserved. So let us focus on R and distinguish two cases depending
its type.

(a) T (R) = ⊸/⊸̄. Let R = ⟨u, v (⊸) w⟩, ⟨u ′, v ′ (⊸̄) w⟩. By IH, since v and v ′
are the first premisses of two multiplicative links, they must be conclusions of
a ?- and a !-link, respectively. Now, in ρ ′(R) we have the vertex v≡ v ′, where
the claim trivially holds since it is a cut.

(b) T (R) = !/?. Let R = ⟨v1 . . . vn (?) w⟩, ⟨u1 . . . um (!) w⟩. If n ≠ m then
ρ ′(R) = 0 and there is nothing to prove, so let us assume otherwise. We show
that no vertex z in R can satisfy any of the two statements whose co-implication
is claimed.

i. If z = w, then it is a cut. Moreover, z cannot be the premiss of any link,
since in R there are already two links connected to z, (cf. Definition 2.3,
item 1).

ii. If z = vi (or z = ui) for some 1 ≤ i ≤ n, then we observe that it cannot
be the conclusion of an exponential link l, nor the first premiss of a mul-
tiplicative link l ′, since it would violate the typing constraints. Indeed,
it must be the case that T (z) = !A, where either A = T (x) and x is any
premiss of l, or !A⊸ B = T (y) and y is the conclusion of l ′. This would
require that T (w) = !!A, which does not belong to the grammar of types
(cf. Definition 2.2).

∎
The following lemma may be used to prove the completeness of a new correctness criteria
with respect to the simple net we defined by translation.

Lemma 3.2 (Quasi-connectedness). For any simple net N such that N /→ 0, and any subnet
N ′ ⊂ N , there exists no path connecting N ′ to the positive conclusion of N if and only if all
the links of N ′ are (co-)weakenings.

Proof. The “if” direction of the bi-implication in the thesis is obvious, from the fact that
any subnet built from (co-)weakenings have no conclusions and must be disconnected
from the main net’s conclusion. For the “only if” part, we use Proposition 3.4, and we
proceed by induction on the length of the (possibly empty) reduction sequence ρ ∶ ⟦t⟧→∗
N + N , for some term t and net N .

3.4. Resource paths 45

1. ∣ρ∣ = 0. Trivial – simply observe the ⟦⋅⟧ does not allow disconnections. ◻
2. ∣ρ∣ > 0 Suppose that ρ = ρ ′ρ ′′, for some reduction sequence ρ ′′ where the thesis

holds (IH) and some reduction step ρ ′ on a redex R.

(a) If ρ ′ is a linear implication step, then, because of Lemma 3.1, the only dis-
connection possibly created comes from a weakening connected to the firsts
premiss of the⊸-link l ∈ R. Let us suppose it is the case, because otherwise IH
is trivially preserved. Now, by definition of nets, and in particular by Defin-
ition 2.3 and 2.2, the first premiss of the ⊸̄-link must be a !-link l ′. Then in
ρ ′(N) the vertices l, l ′ form an exponential redex, which by hypothesis cannot
make N implode in 0, therefore by Equation 3.15 l must be a co-weakening.
Hence N ′ = {l, l ′} and we conclude. ⧫

(b) Otherwise ρ ′ is a exponential implication step between two exponential links
l, l ′ None of the premisses of l, l ′ can be the conclusion of a (co-) weakening, as
stated by Lemma 3.1, therefore no new disconnection may be possibly created.
Hence, the IH is trivially preserved and we conclude. ⧫◻∎

Proposition 3.5. Any two resource redex in a net are parallel.1.

Proof. Notice that any redex in a resource net involve exactly two links, one positive and
one negative, and also that the cut involves the principal ports of the two links. These two
facts imply that two redexes cannot overlap. ∎
Proposition 3.6. Net reduction strongly normalises. Moreover, it simulates term reduction
via translation: for any term t, if t → t ′, then ⟦t⟧ →2r ⟦t ′⟧ with a (⊸ /⊸̄)-step followed by a(!/?)-step.
Proof. See Tranquilli [2011] on the promotion-enabled generalisation of RINs and RC. ∎

3.4 Resource paths

We study the action of the reduction on paths, first by defining the appropriate notion
of residual, i.e. the result of a reduction, and that of persistence, i.e. the capability of
resisting any reduction, that is a sort of normalisability.

3.4.1 Statics

Recall the basic definitions needed to ensure visibility by a GoI construction of the com-
putation in a path, that are straightness and maximality introduced in Definition 2.17. In

1 For an introduction to basic concepts of rewriting theory in the more classic settings of terms, we address
the reader, for instance, at Baader and Nipkow [1998].

46 3. Geometry of Resource Interaction

addition to those, we define a notion of comprehensiveness enabling a path to see the en-
tirety of the computation. This last notion is the only original difference with respect to
the classic notion of path as formulated in Danos and Regnier [1995].

Definition 3.9 (Comprehensiveness). A path π ∈ N is comprehensive when it crosses all
the premisses of all the exponential links. The set of comprehensive execution paths in any
simple net N being a (non-zero) addend of N is written PEC(N).
Example 3.4. Recall the nets discussed in Example 3.3 and observe again Figure 3.4. Con-
sider the net ⟦I⟧ and the path φ = (w1,w2,w3), which is straight and also maximal.
Moreover, PE(⟦I⟧) = {φ,φ†}. Notice that in N the paths (v1, v4) and (v1, v2, v1) are not
straight — the former is twisting, while the latter is bouncing. What about PE(N)? If
we start from v1 we find two paths seeking for the head variable: π1 = (v1, v2, v3, z1) and
π2 = (v1, v2, v3, z2). Both π1, π2 are straight and maximal, thus execution, but they are
not comprehensive, since they do not cross v4 nor v7.

3.4.2 Dynamics

With the notions just introduced we now define the property of path persistence, that
intuitively means “surviving cut-elimination”. We first inspect the action of reduction on
paths, and isolate the notion of residual of a given path with respect to a given reduction.
We shall go by induction on its subpaths that pass through a given redex, called crossings,
and say that the residual(s) of a path are obtained by the substitution of the crossing with
its residual(s), that are the images of reduction as naturally induced by the graph-rewriting.
The case of linear implication is straightforward, because the rewriting is local and we only
have to ensure that a path does not partially belong to the redex. The case of exponentials
is instead more delicate, because the rewriting is global: a simple net is rewritten as a sum
of simple nets, hence a path may be duplicated in several addends or destroyed. Which
addends contain the residual(s) of a given crossing of the redex? If the reduction of an
exponential redex R rewrites the simple net to which it belongs as the empty sum, then
also the residual of the crossing is 0. Otherwise, the reduction rewrites the net as a sum of
simple nets where any crossing always has a residual (cf. Definition 3.8). But two crossings
of R within a path may have residuals in different simple nets created by the reduction,
each one obtained from a fixed permutation of premisses to substitute R. Therefore, the
residual of a path is a sum of paths, morally varying on the set of permutations they are
allowed to follow.

Definition 3.10 (Linear implication residual). Let N be a net where χ ∈ P(N) is a cross-
ing of a linear implication redex R (see Definition 2.18). Suppose R as in the topmost
redex of Figure 3.3 or, equivalently, as in Equation 3.14, and let ρ be the reduction step
on R. Then the residual of χ with respect to ρ, is defined as follows and by the rule
ρ(χ†) = (ρ(χ))†.

ρ((v,w,u)) def= (v); (3.16)

ρ((v ′,w,u ′)) def= (v ′); (3.17)

ρ((v,w,u ′)) def= 0; (3.18)

ρ((v ′,w,u)) def= 0. (3.19)

3.4. Resource paths 47

Let π ∈ P(N) be long enough for R (see Definition 2.18), and let RCFR(π) = π0 ∶∶ χ1 ∶∶
π1 ∶∶ . . . ∶∶ χk ∶∶ πk (ibidem). Then:

ρ(π) def= ⎧⎪⎪⎨⎪⎪⎩
π0 ∶∶ ρ(χ1) ∶∶ π1 ∶∶ . . . ∶∶ ρ(χk) ∶∶ πk if for any i, ρ(χi) ≠ 0;
0 otherwise.

(3.20)

Definition 3.11 (Exponential residual). Let N be a net where χ ∈ P(N) is a crossing of
an exponential redex R. Suppose R as in the lowermost redex of Figure 3.3, or in textual
notation given in Equation 3.15, and let ρ be the reduction step on R and σn ∈ Sn. The
residual of χ with respect to ρ and σn is defined as follows and by rule ρ(χ†) = (ρ(χ))†.
For any 1 ≤ i ≤ n, and 1 ≤ j ≤m:

ρσn((vi,w,uj)) def= ⎧⎪⎪⎨⎪⎪⎩
(vi) if n =m, and σn(i) = j,
0 if n ≠m, or σn(i) ≠ j; (3.21)

where in V(ρ(R)) we have that vi ≡ uσn(i). Now, similarly to the last definition, given
π ∈ P(N) such that RCFR(π) = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χk ∶∶ πk, we define the residual of π
with respect to σn:

ρσn(π) def=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π0 ∶∶ ρσn(χ1) ∶∶ π1 ∶∶ . . . ∶∶ ρσn(χk) ∶∶ πk if n =m, and

for all 1 ≤ l ≤ k, ρσn(χl) ≠ 0;
0 otherwise.

(3.22)
Notice that ρσn(π) may be 0 even if k = 0, i.e. when π does not cross R. Finally, we can
define the residual of π as the sum of all the residuals, for any σn:

ρ(π) = ∑
σn∈Sn

ρσn(π). (3.23)

Definition 3.12 (Reduction and persistence). For a given reduction step ρ, the path reduc-
tion function w.r.t. ρ is the function, written ρ, that maps a path π in N to the residual
of π, i.e. a sum of paths in ρ(N). If ρ(π) ≠ 0, then π is persistent w.r.t. ρ. If, for every
reduction sequence ρ̄ = (ρ1, . . . , ρm), and for every 1 ≤ i ≤ m, ρ1(. . . ρi−1(π) . . .) persists
to ρi, then π is persistent.

Example 3.5. Recall the nets discussed in Example 3.3 and let ρ be the reduction illustrated
in Figure 3.4, where we will denote by Nl and Nr the left and right addend of the reduct,
respectively. Observe the execution paths π1 = (v1, v2, v3, z1) and π2 = (v1, v2, v3, z2),
mentioned in Example 3.4. Both are persistent, since: NF(π1) = π1r = (v1, v2 ≡ z1) and
NF(π2) = π2l = (v1, v2 ≡ z2). Remark also that π1, π2 cross the exponential redex dif-
ferently, and they do not belong to the same addend of the reduct, for π1r ∈ Nr, while
π2l ∈ Nl. Also, if we begin with the in conclusion z1, which morally represents a free
variable, we find straight paths that search for the argument to be substituted there, even-
tually reaching the out conclusion. Consider π3 = (z1, v3, v2, v4, v5, v6, v3, z1). It crosses
the same exponential redex with two crossings, namely (z1, v3, v2) and (v6, v3, z1), that
are incompatible since they belong to different permutations. Therefore π3 not persistent,
as it morally uses the same variable twice, for both the applications in N .

Fact 3.1. Straightness, maximality and comprehensiveness are preserved by reduction.

48 3. Geometry of Resource Interaction

3.4.3 Comprehensiveness and bijection

The persistence property of a path naturally implies that it travels only through vertices
whose links morally contribute to the normalisation — a persistent path cannot cross
(co-)weakenings2. Therefore, if we restrict ourselves to closed nets of constant type, we
obtain a stronger property: a persistent execution path travel through all vertices of the
net that are not conclusions of a 0-ary exponential links. Despite what the creation of
sums may suggest at a first glance, RINs do not allow for duplication of paths. Intuitively,
the set of persistent ones is split from the simple net containing the redex into the addends
created by the reduction. We shall show indeed that path reduction for any step ρ induces
a bijection between the persistent paths of a net N and those of ρ(N). To prove these two
facts, we first explicit in the next lemma an expected property: the alternation between
multiplicative and exponential operators that lies in the grammar of types has a natural
and graphical counterpart in links of nets.

Lemma 3.3. In a closed net N ∶ ★ any persistent execution path is comprehensive.

Proof. We shall prove a stronger statement: given a persistent path π ∈ PE(N), a vertex
v ∉ π if and only if there exists a (co-)weakening l such that v ∈ C(l).

1. The “if” direction of the claim follows from a mere observation of the Definition 2.6
of execution paths. If π includes a conclusion of a (co-)weakening, then π is neces-
sarily bouncing or non-maximal, in both cases contradicting the hypothesis that π
is an execution path. ◻

2. In order to prove the “only if” part of the claim, let us first recall that, by Defini-
tion 3.4, for any simple net N ′ there exists a term such that N ′ either appears in its
translation, or in some of its reducts. We now go by induction on a sequence (ρ̄)−1
of expansions (or an anti-sequence of reductions) from NF(N) back to N = ⟦t⟧, for
some term t. If NF(N) = 0 there is nothing to prove, so we shall assume it to be
non-zero.

a. Base. Suppose ∣ρ̄∣ = 0. Then NF(N) = N = c ⟦t⟧ = ⟦c t⟧ for some c ∈ N.
Therefore t = ⋆, because the only closed term whose translation is normal
with respect to net reduction is ⋆. Then ⟦t⟧ = ⟨(★) v⟩, and PE(⟦t⟧) = {(v, v)},
hence the claim. ⧫

b. Step. Suppose ∣ρ̄∣ > 0. Let ρ ∶ N → N
′ and N

′ →∗ NF(N). Also, let R be the
redex eliminated by ρ, and C[] its context. We then distinguish two sub-cases
depending on the type of R.

i. T (R) =⊸/⊸̄. Suppose N ′ to be an addend of N
′ containing the vertices

v≡v1 ≡v2 and u≡u1 ≡u2, and assume N to be the addend of N contain-
ing u, v. Let the expansion step be the following, which introduces the
distinct vertices v1, v2, u1, u2,w.

N
′ = C[u1≡u2, v1≡v2] ← C[⟨u1, v1 (⊸) w⟩, ⟨u2, v2 (⊸̄) w⟩]

(3.24)
2The remark can be generalised also to GoI constructions for non-linear calculi, such as the ordinary λ-

calculus or mMELL proof-nets (presented in Chapter 2), where an abstraction with no occurrences of the bound
variable may erase its argument, or a weakening may erase the box that is cut with.

3.4. Resource paths 49

We firstly assume that π ∈ N ′, because otherwise π is unaffected and
the IH would be trivially preserved. Now v1, v2 are second premisses of
the cut links, therefore, as established by Lemma 3.1, they cannot be the
conclusion of a (co-)weakening, and consequently neither v can. Hence,
by IH, v ∈ π and it is enough to observe, by Definition 3.10, that also
v1, v2 ∈ ρ−1(π). Let’s now discuss u. Observe first that, since u1 and
u2 are first premisses of multiplicative links, we know from Lemma 3.1
that they both must be conclusion of exponential links. Therefore, and
by definition of reduction, u has to be an exponential cut. We distinguish
two sub-cases.
A. If u ∉ π, then by definition of path reduction, u1, u2 ∉ ρ−1(π).

Moreover, by IH we have that u the conclusion of a weakening or
a co-weakening link.
I. If u is the conclusion of a weakening, then observe that the co-

contraction whose conclusion is u must have arity 0. Otherwise,
the reduction of u would rewrite N ′ as 0, contradicting the persist-
ence hypothesis for π.

II. If instead u the conclusion of a co-weakening, then, dually with
respect to the previous case, and for the same reductio ad absurdum,
the contraction that has conclusion in u must have arity 0.

Hence, in both cases u is a cut between 0-ary exponentials, which by
definition of reduction implies that u1, u2 are respectively conclusions
of a weakening and a co-weakening link. ▲

B. Otherwise, u ∈ π. Then again by inspection of Definition 3.10, we
verify that u1, u2 ∈ ρ−1(π). ▲◊

ii. T (R) = !/?. If the expansion affects no addends, i.e. if the reduction
rewrites as 0 a simple net in N

′, then π is unaffected, since we assumed it
to be persistent, and IH is trivially preserved. Otherwise, the arity of the
two exponential links are equal, so let ρ be as follows.

C
⎡⎢⎢⎢⎣ ∑
σn∈Sn

v1≡uσn(1), . . . , vn≡uσn(n)⎤⎥⎥⎥⎦← C [⟨v1, . . . , vn (!) w⟩, ⟨u1, . . . , un (?) w⟩] . (3.25)

A. If n = 0, and the reduct of the redex is empty, then trivially π cannot
not cross it. Nor can cross the redex, since the redex is made by a
wakening and a co-weakening link, and we supposed π maximal and
persistent. ▲

B. If n > 0, then let σn ∈ Sn and consider the vertex vi ≡ uσn(i). No-
tice that it cannot be the conclusion of a 0-ary exponential link. By
contraposition, suppose otherwise and notice that, by definition of
typing, in the reducendum we would have T (vi ≡ vσn(i)) = !A for
some type A. This would absurdly imply T (w) = !!A, that is not a
valid type. Not being a (co-)weakening conclusion, by IH we have
that vi ≡uσn(i) ∈ π. To conclude it is then sufficient to observe that
by definition of reduction, either (vi,w, vσn(i)) or its reversal belong
to ρ−1(π). ▲

50 3. Geometry of Resource Interaction

◊
⧫
◻
∎

Remark 3.4. The notion of path comprehensiveness appears to be similar the the trip
lengthiness introduced by Girard [1989, §2.1, p. 30] to characterise proof-nets among the
nets in the case of MLL. This should not surprise, since the structure of resource nets, in
its essence, only adds non-deterministic superposition to the structure of the multiplic-
ative fragment of linear logic. Furthermore, we conjecture path comprehensiveness can
be easily adapted to obtain a concise and elegant criterion for the correctness of simple
resource net.

Theorem 3.1 (Reduction is bijective on persistent paths). For any closed net N ∶ ★, every
reduction step ρ induces a bijection between execution paths in N that are persistent to ρ and
those in ρ(N).
Proof. Let π ∈ PE(N) be persistent to ρ, let R the redex of ρ, and suppose RCFR(π) = π0 ∶∶
χ1 ∶∶ π1 ∶∶ . . . ∶∶ χk ∶∶ πk. There are two reduction rules possibly used by ρ.

1. T (R) =⊸/⊸̄. Because of the persistence of π to ρ, and by the definition given by
Equation 3.20, we have χl ≠ 0, for all 0 ≤ l ≤ k, and ρ(π) = π0 ∶∶ ρ(χ1) ∶∶ π1 ∶∶ . . . ∶∶
ρ(χk) ∶∶ πk. Then, if ρ is as in Figure 3.3, the bijection is given as follows:

(a) χl = (v,w,u) if and only if ρ(χl) = (v);
(b) χl = (v ′,w,u ′) if and only if ρ(χl) = (v ′).

Such a bijection holds between χl and ρ(χl), so we also have a bijection between π
and ρ(π). ◻

2. T (R) = !/?. Suppose the redex R being as in Figure 3.3. Because of the persistence
of π to ρ, and by the definition given by Equation 3.22 and 3.23, it must be the case
that n =m and that there exists a permutation σn ∈ Sn such that for all 0 ≤ l ≤ k, we
have ρσn(χl) ≠ 0. Moreover, by Lemma 3.3, π is comprehensive, which in particular
means that vi, uj ∈ π for any 1 ≤ i, j ≤ n. Hence, for any 1 ≤ i ≤ n there exist
0 ≤ l ≤ k and 0 ≤ j ≤ n such that χl is either (v1,w,uj) or its reversal. In both cases,
by Equation 3.21, it must be the case that σn(i) = j so that ρσn(χl) = (vσn(i)≡uj).
This means that σn is unique, and for any other σ ′n we have ρσ

′
n(π) = 0. We then

obtained a one-to-one correspondence between π and ρ(π). ◻
∎

Theorem 3.2 (Paths and addends). For any closed simple net N ∶ ★, the number of execution
persistent paths in N is equal to the number of addends of the normal form of N .

Proof. Any addend in a normal net is the simple net made by ⋆, which evidently has only
one execution path, the unitary one on the only vertex. The thesis therefore is a corollary
of Theorem 3.1. ∎

3.4. Resource paths 51

3.4.4 Confluence and persistence

Since reductions on both RC and on RINs enjoy local confluence, the property is easily
verified also on path reduction. This implies that persistence of a path with respect to a
normalisation sequence is a sufficient condition for its general persistence.

Lemma 3.4. Let N be a resource net and let π ∈ PE(N). For any two reduction steps ρ, σ on
N , there exist two sequences ρ̄, σ̄ such that ρ̄(σ(π)) = σ̄(ρ(π)).

Proof. Let R, S be the respective redexes of ρ and σ, and let N ,M be the simple nets to
which R, S respectively belong.

1. If N ≠ M , then let N = M + N + M . By Definition 3.8 of reduction, ρ(N) =
M + ρ(N)+M and σ(N) = M +N +σ(M). Therefore R ⊂ σ(N) and S ⊂ ρ(N).
Let ρ̄ be the reduction step acting on R within σ(N) and let σ̄ be that on S within
ρ(N). We immediately obtain that ρ̄(σ(N)) = M+ρ̄(N)+σ(M), and σ̄(ρ(N)) =
M + ρ(N) + σ̄(M), which are equal as claimed. ◻

2. If N = M , then consider the partitioning of π obtained by iteratively isolating: first
the longest prefix π ′ which does not cross S, then the longest prefix π ′′ which does
not cross R.

π = π ′1 ∶∶ π ′′1 ∶∶ . . . ∶∶ π ′h ∶∶ π ′′h (3.26)

By definition of reduction, R, S are disjoint, i.e. if R ∋ v ∈ S then iface(R) ∋ v ∈
iface(S). This means that π ′i, π ′′i , for any 1 ≤ i ≤ h, are long enough respectively for
R, S. Therefore, we can highlight RCFR(π ′i) and RCFS(π ′′i) within Equation 3.26
and obtain a combined redex crossing form of π for R, S:

RCFR,S(π) = π0,0 ∶∶
χ1,1 ∶∶ π1,1 ∶∶ . . . ∶∶ χ1,r1 ∶∶ π1,r1 ∶∶
ψ1,1 ∶∶ π1,r1+1 ∶∶ . . . ∶∶ ψ1,s1 ∶∶ π1,r1+s1 ∶∶⋮
χh,1 ∶∶ πh,1 ∶∶ . . . ∶∶ χh,rh ∶∶ πh,rh ∶∶
ψh,1 ∶∶ πh,rh+1 ∶∶ . . . ∶∶ ψh,sh ∶∶ πh,rh+sh . (3.27)

where χi,j (resp. ψi,j) is the j-th crossing of R (resp. of S) within π ′i (resp. π ′′i). We
distinguish three cases, depending on the kind of redexes.

(a) T (R) = T (S) =⊸/⊸̄. Recall that R, S are disjoint, and observe that by Defin-
ition 3.8 of net reduction, both ρ and σ rewrite N as a simple net. Thus,
S ⊂ ρ(N) and R ⊂ σ(N). This means that we can simply take ρ̄ = ρ redu-
cing R and σ̄ = σ reducing S. We immediately verify the claim by applying

52 3. Geometry of Resource Interaction

Definition 3.10 of multiplicative residual to Equation 3.27.

σ̄(ρ(π)) = ρ̄(σ(π))
= π0,0 ∶∶
ρ(χ1,1) ∶∶ π1,1 ∶∶ . . . ∶∶ ρ(χ1,r1) ∶∶ π1,r1 ∶∶
σ(ψ1,1) ∶∶ π1,r1+1 ∶∶ . . . ∶∶ σ(ψ1,s1) ∶∶ π1,r1+s1 ∶∶⋮
ρ(χh,1) ∶∶ πh,1 ∶∶ . . . ∶∶ ρ(χh,rh) ∶∶ πh,rh ∶∶
σ(ψh,1) ∶∶ πh,rh+1 ∶∶ . . . ∶∶ σ(ψh,sh) ∶∶ πh,rh+sh . (3.28)

⧫
(b) T (R) = ⊸/⊸̄ and T (S) = !/?, or T (R) = !/? and T (S) = ⊸/⊸̄. We assume

the former, since the proof is identical once the roles of R and S are swapped.
Let n be the arity of the ?-link in R. This time ρ rewrites N as a simple net,
while σ rewrites it as a sum of n ′ simple nets (cf. Definition 3.8). Observe
again that S ⊂ ρ(N), so take σ̄ = σ to be the reduction step for such S.

i. If n ′ = 0, R is not present in σ(N) = 0. So, let ρ̄ be the empty reduction
sequence. We immediately verify the claim. ◊

ii. Otherwise n ′ > 0, which means that R is copied in the n ′ addends of
σ(N) = ∑σn∈Sn σσnN . To close the reduction diagram, we then have to
reduce all the duplicates of R. So, let us denote the sum of reducts of R as∑σn∈Sn Rσn , and consider the set, for any σn ∈ Sn, of the reduction step
ρσn which reduces Rσn . Let ρ̄ be the sequence obtained by any ordering
on that set. We can now unfold Definition 3.10 and Definition 3.11 of
exponential residual onto Equation 3.27.

σ̄(ρ(π)) = ∑
σn∈Sn

π0,0 ∶∶
ρ(χ1,1) ∶∶ π1,1 ∶∶ . . . ∶∶ ρ(χ1,r1) ∶∶ π1,r1 ∶∶
σσn(ψ1,1) ∶∶ π1,r1+1 ∶∶ . . . ∶∶ σσn(ψ1,s1) ∶∶ π1,r1+s1 ∶∶⋮
ρ(χh,1) ∶∶ πh,1 ∶∶ . . . ∶∶ ρ(χh,rh) ∶∶ πh,rh ∶∶
σσn(ψh,1) ∶∶ πh,rh+1 ∶∶ . . . ∶∶ σσn(ψh,sh) ∶∶ πh,rh+sh .

(3.29)

ρ̄(σ(π)) = ∑
σn∈Sn

π0,0 ∶∶
ρσn(χ1,1) ∶∶ π1,1 ∶∶ . . . ∶∶ ρσn(χ1,r1) ∶∶ π1,r1 ∶∶
σσn(ψ1,1) ∶∶ π1,r1+1 ∶∶ . . . ∶∶ σσn(ψ1,s1) ∶∶ π1,r1+s1 ∶∶⋮
ρσn(χh,1) ∶∶ πh,1 ∶∶ . . . ∶∶ ρσn(χh,rh) ∶∶ πh,rh ∶∶
σσn(ψh,1) ∶∶ πh,rh+1 ∶∶ . . . ∶∶ σσn(ψh,sh) ∶∶ πh,rh+sh .

(3.30)

Comparing the last two equations, we verify immediately that we have
ρσm(χi,j) = ρ(χi,j), for any σn ∈ Sn. Ergo ρ̄(σ(π)) = σ̄(ρ(π)). ◊

⧫

3.4. Resource paths 53

(c) T (R) = T (S) = !/?. Let n,m respectively be the arities of the ?-links in R, S,
and let n ′,m ′ be the numbers of simple nets respectively generated by ρ, σ on
N . We separate three cases depending on the condition of nullity of n ′,m ′.

i. n ′ = m ′ = 0, which means that n (resp. m) is not equal to the arity of
the !-link in R (resp. S). Then clearly ρ(π) = σ(π) = 0, so let ρ̄ and σ̄
both be the empty reduction sequence, and immediately obtain the claim:
ρ̄(σ(π)) = σ̄(ρ(π)) = 0. ◊

ii. Either n ′ or m ′ is null. Suppose the former (the other case is dual), i.e.
n ′ = 0 and m ′ > 0. This last fact implies that ρ(π) = 0, so on the one
hand, let σ̄ be the empty reduction sequence. On the other hand notice
that, as in case 2(b)ii, R is copied by σ into ∑σn∈Sn Rσn . So, let ρ̄ be an
enumeration of the set including the reduction step ρσn reducing on RSn ,
for all σn ∈ Sn. We then obtain:

ρ̄(σ(π)) = ∑
σm∈Sm
σn∈Sn

π0,0 ∶∶
ρσmσn (χ1,1) ∶∶ π1,1 ∶∶ . . . ∶∶ ρσmσn (χ1,r1) ∶∶ π1,r1 ∶∶
σσn(ψ1,1) ∶∶ π1,r1+1 ∶∶ . . . ∶∶ σσn(ψ1,s1) ∶∶ π1,r1+s1 ∶∶⋮
ρσmσn (χh,1) ∶∶ πh,1 ∶∶ . . . ∶∶ ρσmσn (χh,rh) ∶∶ πh,rh ∶∶
σσn(ψh,1) ∶∶ πh,rh+1 ∶∶ . . . ∶∶ σσn(ψh,sh) ∶∶ πh,rh+sh ;

(3.31)

where for any σn ∈ Sn, and any σm ∈ Sm, we have ρσmσn (χi,j) = 0. Thus,
ρ̄(σ(π)) = 0. ◊

iii. n ′,m ′ > 0. Let ρ̄ be defined as in sub-sub-case 2(c)ii. Dually, since S is
copied by ρ into ∑σm∈Sm Sσm , define σ̄ as an enumeration of the set of
any reduction step σσn reducing on SSm , for all σm ∈ Sm. We obtain:

ρ̄(σ(π)) = ∑
σn∈Sn
σm∈Sm

π0,0 ∶∶
ρσm(χ1,1) ∶∶ π1,1 ∶∶ . . . ∶∶ ρσm(χ1,r1) ∶∶ π1,r1 ∶∶
σσnσm(ψ1,1) ∶∶ π1,r1+1 ∶∶ . . . ∶∶ σσnσm(ψ1,s1) ∶∶ π1,r1+s1 ∶∶⋮
ρσm(χh,1) ∶∶ πh,1 ∶∶ . . . ∶∶ ρσm(χh,rh) ∶∶ πh,rh ∶∶
σσnσm(ψh,1) ∶∶ πh,rh+1 ∶∶ . . . ∶∶ σσnσm(ψh,sh) ∶∶ πh,rh+sh .

(3.32)

Comparing it with Equation 3.31, we observe that for any σn ∈ Sn and
any σm ∈ Sm, we clearly have ρσm(χi,j) = ρσmσn (χi,j), and σσn(ψi ′,j ′) =
ρσnσm(ψi ′,j ′). Hence ρ̄(σ(π)) = σ̄(ρ(π)). ◊

⧫
◻
∎

Lemma 3.5. Let N be a resource net and let π ∈ PE(N). If π is persistent w.r.t. a reduction
sequence ρ̄ such that ρ̄(N) = NF(N), then π is persistent.

54 3. Geometry of Resource Interaction

Proof. Let the rank rk(N) of a resource net N be the length of the longest reduction
sequence on N . Observe that the rank is always finite, since the reduction on RINs is
strongly normalising and thanks to Kőnig lemma. So we can go by induction on rk(N)
and show that π is persistent to any normalisation sequence σ̄.

1. Base: rk(N) = 0. This implies that ∣ρ̄∣ = 0, which means that NF(N) = N . There-
fore, ρ̄ is the only possible reduction sequence on N . Hence, π is trivially persistent.◻

2. Step: rk(N) > 0. Since this implies that ∣ρ̄∣, ∣σ̄∣ > 0, let ρ̄ = ρ1ρ̄2 and σ̄ = σ1σ̄2 for
some reduction steps ρ1, σ1 and reduction sequences ρ̄2, σ̄2. We can then apply the
local confluence property (Lemma 3.4) on ρ1, σ1 and obtain that there exist two
sequences θ̄, φ̄ such that θ̄(ρ1(π)) = φ̄(σ1(π)).
Now, since rk(ρ1(N)) < rk(N) and ρ1(π) is persistent w.r.t. the normalisation
ρ̄2, per IH we have that ρ1(π) is persistent. This in particular implies that ρ1(π)
persists to θ̄. Moreover, if µ̄ is a normalisation sequence on θ̄(ρ1(π)), then ρ1(π)
persists to θ̄µ̄ as well. Therefore, we can apply IH again, because rk(θ̄(ρ1(N))) <
rk(ρ1(N)) < rk(N), and obtain that θ̄(ρ1(π)) is persistent. But φ̄(σ1(π)) =
θ̄(ρ1(π)) ≠ 0, therefore this means that σ1(π) persists to φ̄ and to φ̄µ̄. Now
rk(σ1(N)) < rk(N), so we can apply the IH one last time and conclude that
σ1(π) is persistent. Hence, σ1(π) persists in particular to σ̄2, which means that
π is persistent w.r.t. σ1σ̄2, i.e. w.r.t. σ̄. ◻

∎

3.5 Resource execution

3.5.1 Dynamic algebra and execution

We are ready to formulate the GoI construction for RINs, adapting the formulation for
the case of mMELL as most classically formulated by Regnier [1992], Danos and Regnier
[1995], and presented here in Chapter 2. The main difference is that we characterise our
resource exponentials, which have no promotion, as a sort of superposition of n-ary mul-
tiplicatives. We define a weight assignment for paths, so that the execution of a net is the
sum of the weights of any execution path within it, and we formulate a monoidal structure
rL∗ of weights representing the computation. A crossing of an exponential link is morally
weighed with a sum of indexed symbols, where the index varies in the set of permutations
of the link’s premisses, and exponential weights interacts exactly as multiplicatives ones,
i.e. by nullification or neutralisation.

Definition 3.13 (Dynamic algebra). The rL∗ monoid, essentially a restriction of L∗
defined in Definition 2.21, is defined over terminal symbols in {0,1,p,q,l,r,⋆}. A word
of its alphabet, called weight, is generated by a binary concatenation operator with infix
implicit notation and a unary adjoint operator (⋅)∗. The concatenation operator and the

3.5. Resource execution 55

set of symbols has the structure of a monoid, whose identity element is 1, equipped with
an additional absorbing element 0.

a(bc) =(ab)c; (3.33)
a1 = 1a = a; (3.34)
a0 = 0a = 0. (3.35)

Moreover, similarly to an adjoint, the inversion operator is involutive and distributes over
concatenation by reversing left and right operands.

(a∗)∗ = a; (3.36)
(ab)∗ = b∗a∗. (3.37)

Finally, it satisfies the neutralisation and annihilation equations, which represent the core
of the computation.

pp∗ = qq∗ = ll∗ = rr∗ = 1; (3.38)
qp∗ = pq∗ = rl∗ = lr∗ = 0. (3.39)

We denote l r . . .r²
n

as en, so that for any n ≠m ∈ N we have ene∗n = 1 and ene
∗
m = 0.

Definition 3.14 (Path weighting). The permuted base weighting is a map w that associate a
weight of rL∗ to an atomic straight path π = (u, v) ∈ P(N) and a resource permutation σ.
Straightness of π implies that it goes either: (i) from a conclusion to a conclusion of a ⋆-
link; (ii) from a premiss to a conclusion of a binary link; (iii) vice versa, from a conclusion
vertex to a premiss of a binary link. The permuted base weighting is defined as follows,
where the first clause covers (i), the clauses from the second to the fifth cover (ii), and the
last clause covers (iii).

wσ((u, v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋆ if there is ⟨(★) u⟩ and u = v;
p if there is ⟨u,w (⊸) v⟩ or ⟨u,w (⊸̄) v⟩;
q if there is ⟨w,u (⊸) v⟩ or ⟨w,u (⊸̄) v⟩;
ei if there is ⟨u1, . . . , ui, . . . , un (?) v⟩ and ui = u;
eσr(i) if there is r = ⟨u1, . . . , ui, . . . , un (!) v⟩ and ui = u;
(wσ((v, u)))∗ otherwise.

(3.40)

The permuted weighting, denoted again as wσ(π), is the lifting of the permuted base
weighting to generic straight paths, and the path weighting, written w (π), is the sum
of all the permuted weights of a path, for any resource permutation.

wσ((v)) = 1; (3.41)
wσ((u, v) ∶∶ π) = wσ((u, v))wσ(π); (3.42)

w (0) = 0; (3.43)
w (π) = ∑

σ∈SN
wσ(π). (3.44)

56 3. Geometry of Resource Interaction

The sum forms a free commutative monoid on the rL∗ structure, and its identity is 0.
Formally, we have that for any a, b, c ∈ (rL∗,+):

(a + b) + c = a + (b + c); (3.45)
a + b = b + a; (3.46)
a + 0 = a. (3.47)

Recall that SN cannot be empty — it contains at least the empty permutation, hence the
weighting cannot be the empty sum.

Definition 3.15 (Regularity and execution). A path π is regular ifw (π) ≠ 0. The execution
of a net N , is the sum of the weights of all its comprehensive execution paths, i.e.

Ex(N) def= ∑
π∈PEC(N)w (π) . (3.48)

Example 3.6. Consider again the closed simple net M , whose reduction has been discussed
in Example 3.3, and that is depicted in the leftmost extremity of Figure 3.5. To have an idea
of the execution of M and of the behaviour of the algebraic structure, let us consider an
execution comprehensive path, one of the persistent two, and compute its weight. Given
that the path is palindromic, i.e. has the form π ∶∶ π†, we will consider only its first half,
that goes from the root of the term to the constant. Moreover, we will break lines when a
path inverts its polarity direction, i.e. if it walks from in to out or vice versa.

(v1, v2, v3,w1,w2,w3, ∑
σ∈S2 q e1 e

∗
σ(2) q∗ e1⋅

w1, v3, v2, p eσ(2) e∗1⋅
v4, v5, v6, v3, z1, z2, z3, p∗ e∗1 q e2 e

∗
σ(1) q∗ e1⋅

z1, v3, v6, p eσ(1) e∗2 ⋅
v7, v8); p∗ e∗1 ⋆.

On the path: reduce it using the exponential rule. On the weight: apply (3.39) and then
(3.35) on the addend s.t. σ = (2, 1), apply (3.38) and then (3.34) on the one s.t. σ = (1, 2).

→ (v1, v2≡w1,w2,w3, =rL∗ q q∗ e1⋅
w1≡v2, p ⋅
v4, v5, v6≡z1, z2, z3, p∗ e∗1 q q∗ e1⋅
z1≡v6, p ⋅
v7, v8) + p∗ e∗1 ⋆ +
0; 0.

Forget zeros on both side. On the path: reduce it using the leftmost linear implication
rule. On the weight: apply (3.38) and then (3.34).

→ (v1≡w2,w3≡v4, v5, v6≡z1, z2, z3, =rL∗ e1 e∗1 q q∗ e1⋅
z1≡v6, p ⋅
v7, v8); p∗ e∗1 ⋆ .

On the path: reduce it using the linear implication rule. On the weight: apply (3.38) and
then (3.34).

→ (v1≡w2,w3≡v4, v5≡z2, z3≡v7, v8); =rL∗ e1 e∗1 e1 e∗1 ⋆.

3.5. Resource execution 57

On the path: reduce it twice using exponential rules. On the weight: apply (3.38) and
then (3.34), and repeat.

→ (v1≡w2≡v5≡z2, z3≡v7, v8) =rL∗ e1 e∗1 ⋆→ (v1≡w2≡v5≡z2≡v8); =rL∗ ⋆ .

Therefore the persistent path turns out to be regular. Even more, along the reduction we
managed to apply, for each step, some rL∗ equations so that the weight of every reduct is
equal to the manipulated weight. The next two theorems shall generalise these two facts.

Remark 3.5 (L∗ versus rL∗). With respect to the L∗-monoid of mMELL that has been
presented in Section 2.5 (cf. Definition 2.21), rL∗ has no exponential modality. In par-
ticular rL∗ can be obtained by removing from L∗: the exponential operator ! and the
commutation and lifting equations. Hence, rL∗ ⊂ L∗. This is the reason for which we
choose to define the weighting function by externally factorising the complexity arising
from the non-deterministic behaviour of RINs. Albeit the weight assignment looses com-
positionality, i.e. compatibility with respect to path concatenation, since it is not always
the case that w (π ∶∶ π ′) = w (π)w (π ′), the formulation is remarkably simple and evokes
projections on orthogonal bases.

3.5.2 Invariance and regularity

We now show that the rL∗ monoid introduced above accurately computes path reduction.
We prove the equivalence between regularity and persistence, and show that execution
is invariant by reduction. Not only the construction is a suitable semantic for ground
typed RINs, but also possesses quantitative awareness, since, for any term, the number of
execution paths that are regular is equal to the number of addends in its normal form.

Lemma 3.6. For any closed net N ∶ ★, any reduction step ρ, and any path π ∈ PEC(N):
w (π) =rL∗ w (ρ(π)) . (3.49)

Proof. Let π ∈ PE(N) with N addend of N containing the redex R. Recall that π has to
be long enough for ρ, for it is maximal. Suppose the RCF of π w.r.t. R is π0 ∶∶ χ1 ∶∶ π1 ∶∶
. . . ∶∶ χk ∶∶ πk. We proceed by a case analysis of the kind of reduction rule.

1. T (R) =⊸ /⊸̄. Let R be as in the leftmost redex of Figure 3.3. We distinguish two
sub-cases, depending on the nullity of ρ(π).
(a) Suppose ρ(π) = 0. By definition of weighting (Equation 3.43) we havew (ρ(π)) =

0. Moreover, by Definition 3.10 and in particular (3.20), there must exists
0 ≤ l ≤ k, such that ρ(χl) = 0. Hence, it must be the case that χl is either as in
(3.18), or as in (3.19).

i. Suppose χl = (v,w,u ′). Then ρ(χl) = 0, and w (χl) = pq∗ =rL∗ 0.
ii. Suppose χl = (v ′,w,u). Then ρ(χl) = 0, and w (χl) = qp∗ =rL∗ 0.

Again by definition of weighting (Equation 3.42, 3.44), and applying (3.35),
we conclude w (π) =rL∗ 0 = w (ρ(π)). ⧫

58 3. Geometry of Resource Interaction

(b) Suppose ρ(π) ≠ 0. Then, again by definition of multiplicative residual, and in
particular by Equation 3.20, we know ρ(χl) ≠ 0 for any 0 ≤ l ≤ k. Hence, it
must be the case that χl is either as in Equation 3.16, or as in 3.17.

i. If χl = (v,w,u), then ρ(χl) = (v ′≡u ′), and w (χl) = pp∗ =rL∗ 1.
ii. If otherwise χl = (v ′,w,u ′), then ρ(χl) = (v ′≡u ′), and w (χl) = qq∗ =rL∗

1.

Now, applying this fact on the definition given by Equation 3.20, and using
Equation 3.34 we conclude.

w (π) = ∑
σ∈SN
wσ(π0) wσ(χ1) wσ(π1) . . . wσ(χk) wσ(πk)

= ∑
σ∈SN
wσ(π0) wσ(π1) . . . wσ(πk)

= w (ρ(π)) .

⧫
◻

2. T (R) = !/?. Let R be as in the rightmost redex of Figure 3.3, and let r be the !-link
involved in it. We distinguish again two sub-cases, depending on the nullity of ρ(π).
(a) Suppose ρ(π) = 0. Then by Definition 3.11, in particular Equation 3.22, there

are only two possible causes.

i. Arity mismatch, i.e. when n ≠ m, where n,m are the arities of the two
links. Because of the hypothesis of comprehensiveness of π, it must be
the case that k ≥ max(n,m). Then, whatever permutation σn ∈ Sn we
choose for the premisses of the !-link in R, there always exists a crossing
χl, for some 0 ≤ l ≤ k, such that χl = (uσn(i),w, vj) and σn(i) ≠ j.

ii. Permutation incoherence, i.e. when n = m, but for any σn ∈ Sn there
exists a crossing χl ⊆ π such that σn(i) ≠ j. This morally happens when
π tries to use more than once a resource, travelling from the same premiss
of the ?-link to two different premisses of the corresponding !-link.

Thus, in both cases there is a “wrong” crossing χl ⊂ π such that, for any re-
source permutation σ ∈ SN (recall Definition 3.6), we havewσ(χl) = eσ(r)(i)e∗j
where σ(r)(i) ≠ j. Hence, by (3.39), wσ(χl) = 0. By definition of weighting
(Equation 3.42, 3.44) and applying (3.35), we have w (π) =rL∗ 0. But by the
same definition we also have w (ρ(π)) = 0, so we conclude.

(b) Suppose ρ(π) ≠ 0. Again by definition of path reduction, it must be the case
that n = m, and that there exists σ ′n ∈ Sn such that for all 0 ≤ l ≤ k we have
ρσ

′
n(χl) ≠ 0. In particular, let χl be as in (3.21), and observe it must be also

the case that σ ′n(i) = j, which allows ρσ
′
n(vi,w,uj) = (vσn(i)≡uj). Moreover,

by the comprehensiveness hypothesis for π, σ ′n has to be unique, so that for
any other σ ′′n, we have ρσ

′′
n(π) = 0. So, according to this, we split resource

permutations SN into S ′N ∪ S ′′N , where the former is the set of any σ ′ such
that σ ′(r) = σ ′n, while, symmetrically, the latter contains any σ ′′ for which

3.5. Resource execution 59

σ ′′(r) ≠ σ ′n. Hence, by Definition 3.14 we obtain:

w (π) = ∑
σ ′∈S ′N

wσ
′(π) + ∑

σ ′′∈S ′′N
wσ

′′(π)
= ∑
σ ′∈S ′N

wσ
′(π0) wσ ′(χ1) wσ ′(π1) . . . wσ ′(χk) wσ ′(πk) +

∑
σ ′′∈S ′′N

wσ
′′(π0) wσ ′′(χ1) wσ ′′(π1) . . . wσ ′′(χk) wσ ′′(πk).

In the leftmost series, by (3.38), wσ
′(χl) = eσ ′(r)(i)e∗j = 1. While in the right-

most, by (3.39), wσ
′′(χl) = eσ ′′(r)(i)e∗j = 0, so it neutralises to 0. Therefore

we concluded:

=rL∗ ∑
σ ′∈S ′N

wσ
′(π0) wσ ′(π1) . . . wσ ′(πk)

= w (ρ(π)) .

◻
∎

Theorem 3.3. For any closed net N ∶ ★, any reduction sequence ρ̄, and any path π ∈ PEC(N):
w (π) =rL∗ w (ρ̄(π)) . (3.50)

Proof. A straightforward induction on the length n of ρ̄.

1. Base. Suppose n = 0. Trivially, ρ̄(π) = π, so w (ρ̄(π)) = w (π).
2. Step. Suppose n > 0. Let ρ̄ = ρ ′ρ̄ ′′, with ρ ′ a single step, ρ̄ ′′ a sequence of re-

ductions. By Definition 3.12 of path reduction, ρ ′(ρ̄ ′′(π)) = ρ̄(π). By previous
Lemma 3.6, w (ρ̄ ′′(π)) =rL∗ w (ρ ′(ρ̄ ′′(π))). But, by inductive hypothesis we have
that w (π) =rL∗ w (ρ̄ ′′(π)) so we conclude.

∎
Theorem 3.4. For any closed net N ∶ ★, a path π ∈ PEC(N) is persistent if and only if π is
regular.

Proof. Immediate from Theorem 3.3. ∎
Theorem 3.5. For any closed net N ∶ ★ and any reduction sequence ρ̄,

Ex(N) =rL∗ Ex(ρ̄(N)). (3.51)

60 3. Geometry of Resource Interaction

Proof. Consider first the execution of N (Definition 3.14 and Equation 3.48), and notice
that we can separate the weights of paths that are persistent to ρ̄ from those of paths that
are not.

Ex(N) = ∑
π∈PEC(N)w (π) = ∑

π ′∈PEC(N)
persistent to ρ̄

w (π ′) + ∑
π ′′∈PEC(N)

not persistent to ρ̄

w (π ′′) . (3.52)

But, by hypothesis of non-persistence w.r.t. ρ̄ we have ρ̄(π) = 0, which implies by The-
orem 3.3 that w (π ′′) = 0. Hence, the rightmost series is 0, and we obtain that:

= ∑
π ′∈PEC(N)

persistent to ρ̄

w (π ′) . (3.53)

Consider now the execution of ρ̄(N), which by definition is:

Ex(ρ̄(N)) = ∑
π ′′′∈PEC(ρ̄(N))w (π ′′′) . (3.54)

Observe that, by a straightforward induction on the length of ρ̄, we can generalise The-
orem 3.1 to obtain the bijection induced by ρ̄ between the paths in PEC(N) persist to ρ̄
and those in PEC(ρ̄(N)). So let π ′ ∈ PEC(N) persistent to ρ̄, and π ′′′ ∈ PEC(ρ̄(N)), such
that ρ̄(π ′) = π ′′′. But by Theorem 3.3 we have w (π ′) = w (ρ̄(π ′))), hence we conclude.

= ∑
π ′∈PEC(N)

persistent to ρ̄

w (π ′) = Ex(N). (3.55)

∎
Corollary 3.1. For any term ⟦t⟧ ∶ ★, the regular paths in ⟦t⟧ are as many as the (non-zero)
addends in NF(t).
Proof. By definition of the calculus and of its nets syntax, NF(t) = n⋆, for some natural
number n. Clearly, PEC(⟦⋆⟧) contains a unique path, made by the unique vertex of ⟦⋆⟧.
Then ∣PEC(⟦NF(t)⟧)∣ = n. But from last Theorem 3.5, Ex(⟦t⟧) = Ex(⟦NF(t)⟧), therefore
the claim. ∎

3.6 Discussion

3.6.1 Related works

A GoI construction for differential interaction nets (DINs) [Ehrhard and Regnier, 2006a]
has already been formulated by De Falco [2008]. Besides the similarities in the technical
setting of DINs, the geometry of resource interaction turns out to be simpler and more
effective, mainly thanks to: (i) the restriction to closed and ground-typed resource nets,
(ii) the associative syntax we adopted for exponential links, and (iii) the stronger notion
of path we use. The first simplifies the shape of persistent paths, because it implies that
they are palindromes — they first start from the root of the net, then travel until to

3.6. Discussion 61

a link representing the constant term ⋆, and finally return to the root — and unique
in every normal net/term. The second simplifies the management of the exponential
links, because it ensures associativity and delimits their dynamics in only one pair of
links, whilst in De Falco’s work this property was completely lost and the system more
verbose. In the latter paper, the author uses binary exponential links and introduces a
syntactical embedding of the sum in nets by mean of binary links of named sums, and
then recover associativity with an equivalence on nets. Compared to ours, De Falco’s
choice results in a drastically more complex GoI construction, even though he suggests
possible extensions of his approach with promotion (corresponding to the full differential
λ-calculus) or even additives. The third ingredient allows us to consider full reduction, i.e.
including the annihilating rule, whilst De Falco studied a “weak” variant, where that kind
of redexes are frozen, and the GoI only characterises the corresponding notion of “weak-
persistence”. Indeed, we restrict to paths that cross every exponential in the net and prove
this assumption not being a limitation, since it is always true, in case of persistence. Thus
whenever t→ 0 a path necessarily crosses the annihilating redex, and the dynamic algebra
is able to detect it.

3.6.2 Open questions

3.6.2.1 Higher expressivity

The geometry of resource interacton here presented is formulated on a restricted calcu-
lus: it lacks not only ordinary constants, such as booleans or natural numbers, but also,
and more importantly, it lacks the power of full recursion, i.e. of Turing completeness.
Can we strengthen the expressivity of the calculi here considered beyond the minimalist
formulation to get closer to real programming-language class?

If one wants to preserve the typed setting, the obvious direction is the inclusion of fixed-
point combinators, to define a PCF-like variant of the resource calculus (RC), where the
restriction to ground types remains innocuous.

3.6.2.2 Geometry of differential interaction

Is it possible to define a more general GoI-based model for the full differential λ-calculus,
and for the full differential linear logic, where both superposition and non-linearity are
present?

In that case, the shape of persistent crossings in an exponential redex does not necessar-
ily respect the definition we gave here by means of fixed permutations, because different
copies of a box containing a redex may need different resource assignments. Moreover,
in order to obtain a degree of compositionality higher than our GoRI, one should most
probably sacrifice the beauty of the invariance under reduction, and make do with a result
of equivalence between regularity and persistence. Nonetheless, the results about the dy-
namics of Taylor expansion for paths that are presented in Chapter 4 provide a promising
starting point for these investigations.

62 3. Geometry of Resource Interaction

Chapter 4

Taylor-Ehrhard-Regnier
Expansion and Geometry of
Interaction

Contents

4.1. Introduction 64

4.1.1 Expansion and paths computation 64

4.1.2 Outline 65

4.2. Taylor-Ehrhard-Regnier expansion 65

4.2.1 Net expansion 65

4.2.2 Term expansion and translation 67

4.2.3 Path expansion 71

4.3. Expansion and reduction 75

4.4. Commutativity of reduction and expansion 76

4.4.1 Commutativity on nets 76

4.4.2 Commutativity on paths 80

4.5. Expansion and execution 87

4.6. Discussion 89

64 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

4.6.1 Related works 89

4.6.2 Open questions 89

4.6.2.1 Infinite paths 89

4.6.2.2Resource abstract machine for the lambda-calculus 90

4.6.2.3Combinatorics of path expansion 90

4.1 Introduction

4.1.1 Expansion and paths computation

The linear nature of resource calculus enables it to be considered as a suitable target lan-
guage for the linearisation of ordinary λ-calculus. The graphical syntax of resource inter-
action nets enhances such linearisation with a tight correspondence at the level of Linear
Logic types: boxes’ content is duplicated with any arbitrary cardinality (thus also erased),
promotions becomes co-contractions, boxes themselves are forgotten, and linear implica-
tions just preserved. A quick look at Figure 4.1 provides the visual intuition. Each boxing-
depth-recursive choice of those cardinalities is a simple resource net, while the (possibly
infinite) series of all of them is a resource net, called the Taylor-Ehrhard-Regnier expan-
sion of the original proof-net. Probably inspired by Girard’s notion of approximants of
the exponential modality [1987], the expansion was originally formulated by Ehrhard and
Regnier [2008] as a map from λ-terms to differential λ-terms, and then simplified to be
targeted into its linear fragment, the resource calculus, expansion was also refined in a
typed net-like counterpart, employing not only the call-by-name translation that we con-
sider here [Mazza and Pagani, 2007, Pagani and Tasson, 2009], but also the call-by-value
discipline [Carraro and Guerrieri, 2014]. Given that resource nets strongly normalise, the
expansion of a term can be interpreted as the series of its finite approximations, hence the
link with Taylor series and the notion of differentiation.

Paths in λ-terms, or proof-nets, already own a sort of linear nature, since they enter in
a box from its principal door every time its content is needed by some external piece of
computation. In other, more operational, words, a path flows down an argument from its
root every time it crosses an occurrence of a variable in need of being substituted.

How is paths dynamics related before and after the expansion? Can we expand β-reduction
into an infinite parallel step of resource reductions? Can we use the linear and non-
deterministic GoI for the resource calculus presented in last chapter to characterise persist-
ent paths in ordinary λ-terms, via expansion? This chapter addresses these questions and
recounts the interplay between the two aforementioned semantic approaches, exploring
both directions of their mutual influence.

4.2. Taylor-Ehrhard-Regnier expansion 65

4.1.2 Outline

We first introduce a qualitative variant of Taylor-Ehrhard-Regnier expansion, which maps
a proof-net, or a path within it, in an infinite sum of simple RINs, or of set of paths within
them (Section 4.2, 4.2.3). Since here this sum is idempotent, the expansion is essentially an
infinite set. Also, we define a notion of expanded cut-elimination, a kind of infinite paral-
lel reduction for RINs which reduces together all redexes that are copied by the expansion
(Section 4.3). This enables us to show the commutativity Theorem 4.3: the expansion
of the reducts of a path π is equivalent to the expanded reducts of the expansion of π.
As a consequence, we can also show that persistence property can be transferred along
expansion, i.e. π persists to MELL reduction if and only if there is π ′ in its expansion
which persists to RIN reduction (Theorem 4.4). Lastly, we exploit these last results to
define a variant of the execution formula for the λ-calculus based on the GoRI (Chapter 3)
— if we assign to every path π in a proof-net the infinite sets of rL∗-weights belonging
to expansions of π, we obtain an expanded formula enjoying the properties of our in-
terest: invariance under reduction (Theorem 4.5), hence characterisation of persistence
(Corollary 4.1).

Most of the original material of the chapter will appear in MSC [2016].

4.2 Taylor-Ehrhard-Regnier expansion

4.2.1 Net expansion

Following definitions in the previous literature [e.g. Mazza and Pagani, 2007, Pagani and
Tasson, 2009], we introduce here the notion of Taylor-Ehrhard-Regnier expansion, as a
map from mMELL proof-nets (see Definition 2.10 and 2.4) to infinite sums of resource
interaction nets (see Definition 3.3). Although the challenging study of multiplicity coef-
ficients is postponed to future investigations, we preserve coherence and employ sums to
put together simple nets, even though the sum is idempotent so they essentially represent
the support of the infinite series used in the original definition. Another particularity
of the definition that is worth to remark is the fact that links’ premisses are sequences,
and not mere sets, of vertices, which means that essentially co-contraction is represented
in a non-commutative way. Because of this, the definition of expansion reflects this in-
formation growth and preserve the ordering of all contraction links whose premisses are
involved in the expansion of a box.

Definition 4.1 (Mixed nets). A simple mixed net is a pre-net built with resource or mMELL
links, i.e. possibly containing co-contractions and promotions, and a boxing function
which assign boxes to promotions (not to co-contractions, nor its premisses). A mixed net
is a possibly infinite sum of simple mixed nets. The sum + is not only associative, com-
mutative, and having an identity element, i.e. the empty sum 0, but it is also idempotent:
M +M = M .

Definition 4.2 (Net expansion). Given a mixed pre-net N , and B ∈ Bxs (N), the i-
ary box expansion of B, written Bi, is depicted in Figure 4.1. Contractions’ premisses

66 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Figure 4.1 i-ary box expansion.

B =
!

z

B
W

v

? ?

y1 ys

X1 Xs

xh

. . .

Bi =
!

z

B1

W1

v1

Bi

Wi

vi

. . .

? ?

y1 ys

X ′1 X ′s
xh.1 xh.i

. . .

are duplicated together with B enforcing stability with respect to their ordering: given
a contraction ⟨Xj (?) yj⟩ such that there exists xh ∈ Xj secondary door of B, in the
expansion such a contraction becomes ⟨X ′j (?) yj⟩, where the sequence X ′j is obtained
from Xj by replacing any such xh with the sequence xh.1, . . . , xh.i.

The outermost expansion, is a function from simple to generic mixed nets, written as M○
when applied to M , and defined by induction on `(M). If `(M) = 0, then simply M○ =
M . Otherwise, if B1, . . . ,Bn are the outermost bordered boxes of M , and Nn is the set
of functions from {1, . . . , n} to N, then:

N ○ def= ∑
a∈Nn Na, (4.1)

Na def= N [Ba(1)1 /B1, . . . ,Ba(n)n /Bn] . (4.2)

Observe that in (4.2) all substitutions are well-defined, since iface(Ba(i)i) = iface (Bi)
for any 1 ≤ i ≤ n. We define the complete expansion of a simple mixed net M as the fixed
point of the outermost expansion, whose domain is extended to generic mixed nets.

0○ def= 0 (4.3)

(∑M)○ def= ∑M○ (4.4)

M
● def= (M

●)○ (4.5)

Observe that the complete expansion may generate an (infinite) number of equal simple
nets which collapse to a single simple net, by sum’s idempotence. The support of a mixed
net M is the set Supp (M) of all addends in M. An element in Supp (M

●) is called an
expansion of N .

Example 4.1 (Net expansion). Consider first the mMELL proof-net N = ⟦I(⋆)⟧, and its
complete expansion N ●. Let B be the only box in N , which contains the ⋆-link. Then
N ● has the cardinality of N, since:

N ● = ∞∑
i=0N [Bi/B] (4.6)

Notice also that N [B1/B] is the only addend that does not reduce to 0, because ⟦I⟧ uses
its argument once.
Now take N ′ = ⟦(I(I))(⋆)⟧ and observe that the term contains two disjoint arguments,

4.2. Taylor-Ehrhard-Regnier expansion 67

i.e. I and ⋆, therefore its translation contains two disjoing boxes, say BI and B⋆, respect-
ively. Hence (N ′)● is in bijection with N ×N, because:

(N ′)● = ∞∑
i=0

∞∑
j=0N ′ [BiI/BI,Bj⋆/B⋆] . (4.7)

Now consider the proof-net N ′′ in Figure 4.2 (left). It contains three boxes: let Bf be the
box containing for ⟦f(⋆)⟧, let BI the one with ⟦I⟧, and B⋆ that with ⟦⋆⟧. Since Bf ⊃ B⋆,
here we see that the expansion becomes quite more complicated than before:

(N ′′)● = ∞∑
i=0

∞∑
j=0

∞∑
k1=0 . . .

∞∑
ki=0N ′′ [Bif/Bf, BjI/BI, Bk1⋆ /B⋆1 , . . . ,Bki⋆ /B⋆i] . (4.8)

Observe in particular that the expansion of B⋆ is replicated by the expansion of its con-
taining box Bf: each addend first selects a number i of copies of the latter, then it selects
i numbers k1, . . . , ki of copies, one for each copy of the former induced by the first step.(N ′′)● has therefore the cardinality of NN. Look again at Figure 4.2 and find:

• in the middle: N ′′ [B2f/Bf, B3I/BI, B1⋆/B⋆1 ,B0⋆/B⋆2];
• on the right: N ′′ [B1f/Bf, B2I/BI, B1⋆/B⋆1].

Along the normalisation of the latter, the first step generates 3! identical addends, each
of which originates in 3 multiplicative steps 3 exponential redexes. 2 of them reduce to 0,
hence the normal form is 0.
Finally, remark also that the three complete expansions, i.e. N ●, (N ′)● and (N ′′)●, are
infinite sums of simple resource nets. This property will be generalised later by Proposi-
tion 4.2.

Remark 4.1 (The structure of expansion). The support of the complete expansion of a
proof-net unveils its elegance once we abstract away the multiplicative structure from the
proof-net, and keep only the nesting relation between boxes: a tree. In this abstract formu-
lation, where the complete expansion is a set of hypertrees (a similar definition has been
independently formalised by Guerrieri and Tortora de Falco [2014]), it is easy to define
the relation between elements of the expansion, that intuitively represents the concept
of being “recursively less expanded than”. Such a relation can be proven not only to be
reflexive, transitive and antisymmetric, hence forming unsurprisingly a partial ordering,
but also to enjoy the existence of supremum and infimum elements, thus forming a lat-
tice. Even more, the structure admits the existence of minimum elements, but not that of
maximum elements. The natural completion of this structure that would enable it to be a
complete lattice are (hypertrees of) resource nets where co-contractions allow infinite ar-
ities. We conjecture that this structure corresponds, very naturally, to the full differential
nets, i.e. resource nets with promotions.

4.2.2 Term expansion and translation

Although the present chapter employs the fine-grained formulation of programs as nets,
all the results about resource nets and expansion can be easily translated to resource cal-
culus. To show it explicitly we now observe that the translation from terms to nets,

68 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Figure 4.2 Example: a mMELL proof-net (left) and two simple mixed nets that belong to
its expansion (middle and right). See also Example 4.1, 4.3, 4.4.

⊸
?

w2

w3

v1

⊸̄
!

⊸̄
?

!

!

★

v2

v4

v5

v6
v7

v3 v8

w1 ⊸
?

w2

w3

⊸
?

x2

x3

⊸
?

z2

z3

v1

⊸̄
!

⊸̄ ⊸̄
?

!

! !

★

v2

v4

v5 y5

v6

y6

v7 y7

v3 v8

w1
x1 z1 ⊸

?

w2

w3

⊸
?

z2

z3

v1

⊸̄
!

⊸̄
?

!

!

★

v2

v4

v5

v6
v7

v3 v8

w1 z1

and the expansion from the ordinary to the resource domains commutes — the resource-
net translation of the term expansion of a λ-term t is equal to the net expansion of the
mMELL-translation of t.

Definition 4.3 (Term expansion). The term expansion is the function from ordinary λ-
terms to possibly infinite sums of resource terms defined by the following structural in-
duction on the λ-syntax.

x● def= x (4.9)

(λx.t)● def= λx.t● (4.10)

(t s)● def= ∞∑
i=0 t

●[s●, . . . , s●´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

] (4.11)

Example 4.2 (Term and net expansions). Recall that [sn] is a shortand for [i³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
s, . . . , s].

Now consider I(⋆) and its expansion: (I(⋆))● = ∑∞
i=0 I[⋆i]. We notice that ⟦I(⋆)⟧● =⟦∑∞

i=0 I [⋆i]⟧. Does the same hold for t = (λf.f@1(f@2(⋆)))(I)? Its expansion is:

t● =
⎛⎜⎜⎜⎜⎜⎝
λf.f@1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∞∑
i=0 f@2

⎡⎢⎢⎢⎣
∞∑
k1=0⋆

⎤⎥⎥⎥⎦ , . . . , f@i+1
⎡⎢⎢⎢⎣

∞∑
ki=0⋆

⎤⎥⎥⎥⎦´¹¹¸¹¹¹¶
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎣
∞∑
j=0 I

j
⎤⎥⎥⎥⎦ , (4.12)

where we observe that the number of occurrences of the variable f varies with the choice
of the number of copies of the argument f@2(⋆). Consider ⟦t⟧, which can be obtained
by a multiplicative step of anti-reduction from the proof-net N ′′ depicted in Figure 4.2.

4.2. Taylor-Ehrhard-Regnier expansion 69

With the help of Example 4.1, where we explored (N ′′)● (see in particular Equation 4.8),
verify that ⟦t⟧● = ⟦t●⟧. The next proposition generalises such intuition.

Proposition 4.1 (Commutativity of translation and expansion). The net expansion of a
mMELL-translated term is equal to the RIN-translation of its expansion. For any t ∈ Λ,

⟦t⟧● = ⟦t●⟧ (4.13)

Proof. The definitions of ordinary and resource terms translations into proof-nets and
resource nets are not uniformly inductive, since they both need the final step which adds
?-link on all in conclusions that represent variable occurrences, (cf. Definition 2.12 and
3.5). Therefore we will first work with the pre-translation, which can be easily handled,
and then consider the final step.

1. We go by induction on the syntax of t, and we will prove as a sub-claim that(jtoΓ)● = jt●oΓ ′ , for any variable to vertices injection Γ and some, appropriately
chosen one, Γ ′. We will omit to explicitly show that such claim holds conversely
hold for any Γ ′ and some Γ , since it will be evident from the proof.

(a) t = ⋆. Then ⟦t⟧Γ = ⟨(★) v⟩ for some vertex v, and (jtoΓ)● = ⟨(★) v⟩. On the

other hand, t● = ⋆ and we immediately conclude jt●oΓ = ⟨(★) v⟩ = (jtoΓ)● ⧫
(b) t = x. Almost identically to previous case, we have jtoΓ = v, i.e. a mixed net

with no links and with one vertex v, therefore also (jtoΓ)● = v. But given that

t● = x, we already have jt●oΓ = v = (jtoΓ)●. ⧫
(c) t = λx.s. This inductive case is still quite simple. On the one hand we have

jtoΓ = ⟨u1, u2 (⊸) v⟩, ⟨w1, . . .wn (?) u2⟩, jsoΓ (4.14)

and trivially

(jtoΓ)● = ⟨u1, u2 (⊸) v⟩, ⟨w1, . . .wl (?) u2⟩, (jsoΓ)● , (4.15)

where the arity l of the ?-link depends on (jsoΓ)●. With the same simplicity,
since by definition of expansion t● = λx.s●, we know that its translation is:

jt●oΓ ′ = ⟨u1, u2 (⊸) v⟩, ⟨w1, . . .wm (?) u2⟩, js●oΓ ′ , (4.16)

where, similarly to Equation 4.15, the arity m depends on js●oΓ ′ . Now, by
inductive hypothesis, we have (jsoΘ)● = js●oΘ ′ for any Θ and some Θ ′. There-

fore for any choice of Supp ((jsoΘ)●) ∋ s ′ ∈ Supp (js●oΘ ′), it must be the case
that l =m. Therefore we conclude by taking Γ = Θ and Γ ′ = Θ ′. ⧫

(d) t = (r s). This inductive case is the really interesting one, since here we can see
expansion at work. First of all:

jtoΓ = ⟨w,v (⊸̄) u⟩, ⟨x (!) w⟩, jroΓ , jsoΓ , (4.17)

70 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

where u ∈ iface (jroΓ) and x ∈ iface (jsoΓ), both unique elements with out

polarity; and jsoΓ is enclosed in a new box. Therefore, by definition of expan-
sion:

(jtoΓ)● = ∞∑
i=0 ⟨w,v (⊸̄) u⟩, ⟨x1, . . . , xi (!) w⟩,

(jroΓ)● , (js1oΓ)● , . . . (jsioΓ)● , (4.18)

where xj is the out vertex in iface ((jsjoΓ)●), and for any 1 ≤ j, j ′ ≤ i we have

iface ((jsjoΓ)●) = iface ((jsj ′oΓ)●). Now, looking at the right-hand side of
Equation 4.13, we have that

t● = ∞∑
i=0 r

● [s●1, . . . , s●i] . (4.19)

So consider the pre-translation with respect to any Γ ′:

jt●oΓ ′ = ∞∑
i=0 ⟨w,v (⊸̄) u⟩, ⟨x1, . . . , xi (!) w⟩,

jr●oΓ ′ , js●1oΓ ′ , . . . , js●ioΓ ′ , (4.20)

where u is the unique out conclusion in iface (jr●oΓ ′) and for any 1 ≤ j ≤ i xj
is the unique out conclusion in I(ks●j pΓ ′). Now, let y@h ′ be one the variable

occurrences of s●j , and assume it to be the expansion of the variable occurrence
y@h of s. To prove the claim we need to impose that (Γ(y@h))● ∋ Γ ′(y@h ′).
But this is always possible since, by inductive hypothesis, we have not only
that (jroΘ)● = jr●oΘ ′ , for any Θ and some Θ ′ (and vice versa); but also that

(jsjoΞ)● = ks●j pΞ ′ , for any Ξ and some Ξ ′ (and vice versa). ⧫
◻

2. Now we consider the final steps of translations. ⟦t⟧Γ = ⎫⎪⎪⎩jtoΓ⎧⎪⎪⎭Γ . In step 1 we verified

that (jtoΓ)● = jt●oΓ ′ , and we showed the existence of Γ, Γ ′. Now, let N be the sum

of simple resource nets obtained from (jtoΓ)● by adding to it, for any variable y of
t, a ?-link having as premiss any vertex belonging to (Γ(yh))●, for any occurrence
h of y. First of all, we easily verify that, by definition of expansion, N = (⟦t⟧Γ)●.
Then, we observe that in ⟦t●⟧Γ ′ the translation similarly adds to jt●oΓ ′ a ?-link,
for any variable y ′ of t●, a ?-link having as premiss any vertices in Γ(y ′h ′) for any
occurrence h ′ of y ′. Therefore, by definition of Γ, Γ ′ and by the conclusion of step
1, we have ⟦t●⟧Γ ′ = N . Hence the claim. ◻

∎

4.2. Taylor-Ehrhard-Regnier expansion 71

4.2.3 Path expansion

Observing the action of expansion on paths, we can identify the expansion of a path π
in a proof-net N as the series of paths which belong to the simple resource nets in the
complete expansion of N and which correspond to π.

Recall the definition of paths in a mMELL proof-net, or in a RIN, and the definition of the
static properties which are necessary to ensure their persistence, hence meaningfulness
as a description of computation: straightness, maximality, and comprehensiveness (see
Definition 2.6, 2.17, 3.9).

Definition 4.4 (Box crossing). Given a proof-net N and π ∈ P(N), its outermost-box
crossing form is:

OBCF(π) def= ε0 ∶∶ β1 ∶∶ ε1 ∶∶ . . . ∶∶ βn ∶∶ εn, (4.21)

where, for every 1 ≤ i ≤ n, βi is a box crossing, that is a maximal subpath belonging to
an outermost box B, i.e. `(B) = 0. Notice that n may be null and that a crossing is not
necessarily a maximal path in B.

Definition 4.5 (Path expansion). Given N a mixed net and π ∈ P(N), let B1, . . . ,Bm be
the outermost bordered boxes of N , let OBCF(π) be as in Equation 4.21, and let a ∈ Nm.
Then the a-ary outermost expansion of π in N is the set of paths obtained by the action of
the outermost expansion of N according to a.

πNa = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
{π} ifm = 0,
{ε0 ∶∶ β1kb(1) ∶∶ ε1 ∶∶ . . . ∶∶ βnkb(n) ∶∶ εn ∣ 1 ≤ ki ≤ a(i)} otherwise,

(4.22)

where for each crossing βj of Bb(j), we write βjkb(j) to the denote the image of βj in the
kb(j)th copy of the box Bb(j). Notice that the rightmost side of Equation 4.22 is empty
whenever there exists 1 ≤ i ≤ m such that a(i) = 0; while it is the singleton {ε0} if n = 0.
The outermost expansion of a set of paths Π is the sum of sets of paths generated by the
sum of all a-ary outermost expansions, extending its domain to sets of path. The sum of
paths satisfies the same properties of the sum of simple resource nets.

ΠNa def= ⋃
π∈Ππ

Na (4.23)

ΠN ○ def= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Π ifm = 0,
∑
a∈NmΠ

Na otherwise. (4.24)

The complete expansion of a sum of sets of paths Π is the fixpoint of the outermost expan-
sion, where we neatly extend its domain to sums of sets of nets.

ΠN
○ def= ∑

N∈Supp(N)
Π⊇Π⊆P(N)

ΠN ○
(4.25)

ΠN
● def= (ΠN

●)N
○

(4.26)

72 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

When it does not lead to confusion, we shall ease the notation of {π}N ●
writing πN ●

. The
complete expansion of a vertex v is the sum of sets of vertices that is naturally obtained by
the complete expansion of the atomic path (v):

vN ● def= ∑
Π∈Supp((v)N●)

{v ′ ∣ (v ′) ∈ Π} . (4.27)

We similarly define the complete expansion of a link l in N as the sum of sets of links
defined as follows.

⟨U (κ) v⟩N ● def= ∑
V∈Supp(vN●)
U∈Supp(uN●)
u∈U

{l ′ = ⟨U ′ (κ ′) v ′⟩ ∣ v ′ ∈ V, u ′ ∈ U, l ′ ∈ L(N ●)} (4.28)

Example 4.3 (Path expansion, a gentle case). Recall from Example 4.1 the proof-net N =⟦I(⋆)⟧ for which, as we previously discussed, we have Bxs (N) = {B}. Recall also its
complete expansion. Let π ∈ P(N) that: starts from the root, crosses the ⊸-link from
the conclusion to the second premiss, crosses the ⊸̄-link from the conclusion to the first
premiss, and reaches the ⋆-link (all omitted crossings can be inferred by straightness).
Recall from Equation 4.6 that for every i ∈ N there is a unique Ni ∈ Supp (N ●), i.e.
N [Bi/ B]. Now, observe that in Supp (πN ●) there is a unique set of paths Πi for every
expansion of N . Moreover, since π crosses once the !-link entering B, and since Ni include
exactly i copies of B, we have that the cardinality of Πi is i. This means in particular that
Π0 = ∅. Notice also that Ni →r 0 for any i ≠ 1, and that both π and π1 are persistent
paths.

Example 4.4 (Path expansion, two less gentle cases). Look again at Figure 4.2, where the
proof-net N and two simple mixed nets M ,M ′ are depicted (from left to right). As we
discussed in preceding Example 4.1, let BI be the box which contains ⟦I⟧, and remember
that M ,M ′ ∈ Supp (N ●).
Let φ ∈ P(N) be defined as follows:

φ = (v1, v2, v3,w1,w2,w3
w1, v3, v2,

v4, v5, v6, v3,w1,w2,w3). (4.29)

If Mi ∈ Supp (N ●) is one of the simple mixed nets that contains i copies of BI, notice
that there exists a unique Φi ∈ Supp (φN ●) that contains any φ ′ ∈ P(Mi) such that
φ ′ ∈ Φ ′

i ∈ Supp (φN ●). This will be generalised by Fact 4.3.
Now remark that φ enters twice in BI. In N ′′ we find 4 expanded paths of φ, 9 in M ′.
The expansion of φ essentially computes an assignment of a copy of B to each crossing.
Hence ∣Φi∣ = i2 if i > 0, 0 otherwise. More generally if φ had crossed BI n times, then∣Φi∣ = in, i.e. the number of n-tuples over (1, . . . , i).
Consider π ∈ P(N) defined as follows:

π = (v3, v6, v7, v8). (4.30)

Remark that π crosses once both Bf (the box with principal door in v4) and B⋆ (the box
with principal door in v7). Notice that there is only one expanded path in M ′′, where

4.2. Taylor-Ehrhard-Regnier expansion 73

both boxes are expanded in one copy, i.e. (v3, v6, v7, v8). But there is again only one
expanded path of π even in M ′, where Bf is expanded twice, i.e. (v3, v6, v7, v8), since in
its second copy B⋆ has 0 copies (so there is only a prefix available: (v3, y6, y7)). To see
the more general picture, let Mi,j1,...,ji ∈ Supp (N ●) be one of the simple mixed nets that
contains i copies of Bf, and ji copies of B⋆i , that is the i-th copy of B⋆. Let Πi,j1,...,ji
be the set of path belonging to the expansions of π inhabiting Mi,j1,...,ji . We can easily
verify that ∣Πi,j1,...,ji ∣ = i × ji. More generally, if π had contained n crossings of the two
boxes, we would have had ∣Πi,j1,...,ji ∣ = (i × ji)n.
Path expansion does not expand a path in the sense of increasing its length, since a path
in the expansion can be constructed by a vertex-by-vertex procedure. Also, expansion
preserves kind and in/out polarities of links, and types of vertices.

Fact 4.1 (Path expansion and length). The size of a path is preserved in its expansion’s ad-
dends: for any π ∈ P(N), and any π ′ ∈ πN ●

, ∣π∣ = ∣π ′∣.
Fact 4.2. For any mMELL proof-net N , let l = ⟨U (κ) v⟩ ∈ L(N) and l ′ = ⟨U ′ (κ ′) v ′⟩ ∈
L ′ ∈ Supp (lN ●). Then:

1. κ = κ ′;
2. T (v) = T (v ′);
3. for any u ∈ U and u ∈ U ′, if u ′ ∈ U ′′ ∈ Supp (uN ●) then T (u) = T (u ′).

Given a path π in a mixed net N , the sets of paths which form the expansion of π are in
bijection with the simple mixed nets which form the expansion of N . This means that
two paths belongs to the same set of paths that appears in the expansion of π if and only
if they inhabit the same mixed net. Moreover, if path expansion is considered as a relation
between the paths of a simple mixed net and those of another simple mixed net appearing
in its complete expansion, then path expansion is injective, or: its inverse relation is a
function.

Fact 4.3 (Bijection between addends). Given N a mixed net and π ∈ P(N), let π ′ ∈ P(N ′)
and π ′′ ∈ P(N ′′) such that N ′,N ′′ ∈ Supp (N ●). Also, let π ′ ∈ Π ′ and π ′′ ∈ Π ′′ such that
Π ′, Π ′′ ∈ Supp (πN ●). Then N ′ = N ′′ if and only if Π ′ = Π ′′.
Lemma 4.1 (Path injectivity). Given two mixed nets N and N ′ ∈ Supp (N ●), for any path
π ′ ∈ P(N ′):

1. there exist π ∈ P(N) and Π ∈ Supp (πN ●) such that π ′ ∈ Π;
2. for any γ ∈ P(N), if π ′ ∈ Γ ∈ Supp (γN ●) then Γ = Π and γ = π.

Proof. By immediate verification against the definition of path expansion. ∎
Remark 4.2 (Non-injectivity w.r.t. simple nets). The expansion functions of paths, of
vertices, and of links are not injective with respect to expansions of the containing net.
Let us clarify with a counterexample for the case of vertices. Let v ∈ V(N) for some

74 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

mixed net N , and consider v ′, v ′′ appearing in vN ●
, i.e. such that there exist V ′ ∈ vN ●

for
which v ′ ∈ V ′′, and V ′′ ∈ vN ●

for which v ′′ ∈ V ′′. Now, if v ′ ≠ v ′′, it may be the case that
V ′ ≠ V ′′, which means that v ′, v ′′ belongs to different addends of N ●, but we may also
have V ′ = V ′′, which implies the converse.

Since path expansion preserve switchingness and acyclicity, we can finally show that ex-
panded nets are sums of simple resource nets.

Lemma 4.2. Let N be a mixed net. If a path π ′ ∈ P(N ●) is switching (or acyclic), then there
exists π ∈ P(N) which is switching (respectively acyclic).

Proof. We simply use the injectivity property of vertex expansion to show that switching-
ness and acyclicity cannot be introduced by path expansion. We separately show inherit-
ance of the two properties.

1. Switching. Recall that by Definition 2.9 given any v ′1, v ′2 premisses of the same link
of kind⊸ or ?, π ′ is switching when if π ′ contains v ′1, then it does not contain v ′2.
Now, let v1, v2 ∈ V(N) be such that v ′1 ∈ V1 ∈ Supp (vN ●

1) and v ′2 ∈ V2 ∈ Supp (vN ●
2),

whose existence and unicity is established by item 4.2.3. Now let π such that π ′ ∈
Π ∈ Supp (πN ●), and assume that v ′1 ∈ π ′. Then, by definition of path expansion, it
must be the case that v1 ∈ π. Now, for the same reason, if v ′2 ∉ π ′ then v2 ∉ π, hence
π is switching. ◻

2. Cyclic. By Definition 2.9, π ′ is cyclic if it contains a cycle γ ′ = (v ′0, v ′1, . . . , v ′n, v ′0),
with n > 0. Because of Lemma 4.1, there are two unique paths γ,π such that γ ′ ∈
Γ ∈ Supp (γN ●) and π ′ ∈ Π ∈ Supp (πN ●). But by definition of path expansion, we
know that if γ ′ ⊆ π ′, then also γ ⊆ π. Moreover item 4.2.3 establishes that there
exists a unique v0 ∈ V(N) such that v ′0 ∈ Supp (vN ●

0), hence γ is a cycle, and π is
cyclic. ◻

∎
Proposition 4.2. The expansion of a mMELL proof-net is a possibly infinite sum of simple
resource interaction nets.

Proof. We directly show that any path in any expansion satisfies Definition 3.4. Let π ′ ∈
P(N ′), for some resource pre-net N ′ ∈ Supp (N ●) and for some proof-net N . Let π ∈
P(N) such that π ′ ∈ Π ′ ∈ Supp (πN ●), whose existence is guaranteed by Lemma 4.1. Now,
by last Lemma 4.2, if π ′ is switching (or cyclic) then also π is switching (respectively,
cyclic). But by Definition 2.10 of mMELL proof-nets, if π is switching then it is not cyclic,
which implies that there cannot exist π ′ switching and cyclic. So we conclude that any
N ′ satisfies the definition of simple resource net, and consequently that N ● is a resource
net. ∎

4.3. Expansion and reduction 75

4.3 Expansion and reduction

Taylor expansion replaces boxes in a mMELL net with a number of copies of its content.
Can we reduce all copies of a same redex together, in an infinitary parallel reduction? We
define such a reduction relation, which in a sense represent the Taylor expansion of the
mMELL cut-elimination, and which we call ‘expanded’.

We first define a notion of parallel reduction on resource nets that is a restriction of that
employed by Pagani and Tranquilli [2009] to show confluence of resource calculus. In the
settings of resource interaction nets a parallel reduction is indeed not hard to formulate,
since, oppositely to mMELL proof-nets, λ-terms and resource λ-terms, the RIN rewriting
system does not allow overlaps, as mentioned in Proposition 3.5. Our limitation simply
aims at tightening it to ease the simulation of mMELL reduction, and is inspired from the
following observation, directly following from Fact 4.2.

Fact 4.4. A mMELL vertex is a cut if and only if its expansion is a sum of sets of cuts.

Definition 4.6 (Multi-hole contexts and substitution). A simple multi-hole context C⟦ ⟧,
(resp. a multi-hole context C⟦ ⟧) is a simple resource context (resp. a linear combination
of simple resource contexts over the semiring of N) having a finite, possibly null, number
of hole links (see Definition 2.14 and recall that !-links are not promotions, nor they have
associated boxes). If C⟦ ⟧ has holes h1, . . . , hn and N is a sum of simple resource pre-nets
P1, . . . ,Pm, then C⟦N ⟧ consists of the (possibly empty) sum of any possible substitution
of the m (non-zero) addends of N into the n holes of C⟦ ⟧. Formally, if Nk denotes{1, . . . , k} (where N0 = {}), and A↣ B the set of injections from a set A to a set B:

C⟦N ⟧ = ∑
c∈Nn↣Nm

iface(Pc(i))=iface(hi)
C[Pc(1)/h1, . . . ,Pc(n)/hn]. (4.31)

In particular, note that when n = 0, one simply get C⟦N ⟧ = C. Also, if m = 0 and
consequently N = 0, then C⟦N ⟧ = 0. Given C⟦ ⟧ a non-simple resource context, and N a
resource pre-net, C⟦N ⟧ is the substitution of the latter in each addend of the former; i.e.:
0⟦N ⟧ = 0 and (C + C)⟦N ⟧ = C⟦N ⟧ + C⟦N ⟧.
Definition 4.7 (Parallel and expanded reduction). The closure of the simple reduction
relation with respect to multi-hole resource contexts is called parallel resource reduction
and written ↠. Formally, given a resource net N = C⟦P1 + . . . + Pn⟧ where C⟦ ⟧ is a
multi-hole context and P1, . . . ,Pn are pre-nets, if P1 → P1, . . . ,Pn → Pn then N ↠
C⟦P1+ . . .+Pn⟧. Given a mMELL proof-net N and a reduction step ρ on a cut c ∈ V(N),
the expanded reduction of ρ, written ρ●, is the parallel reduction of the set of any resource
redex in Supp (N ●) for any cut in Supp (c●).
Notation 4.1. We extend the domain of resource reduction for paths to sets of paths. For
any reduction ρ, and any set of paths Π, we write ρ(Π) to denote ⋃π∈Π ρ(π).
Remark 4.3 (Indirectness of definition of expanded reduction). Even though expanded
reduction has been defined using expansion itself but it would be interesting to have in-
stead a direct formulation. Given N a sum of simple resource nets image of N ●, how can
one determine, with no knowledge of N , a sum of set of redexes R such that if N = N ●
then R = R●? A terse answer has been developed by the author, but requires a restric-
tion undesired by the aim of this thesis: it need to be formalised on proof structures that

76 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

enjoys connectedness, such as weakening-free proof-nets or λ-terms. In this setting, it is
not difficoult to exploit the property of ‘uniformity’ [Ehrhard and Regnier, 2008], that is
the relation of syntactical similarity which intrinsically belongs to all elements within the
expansion of the same term/net. In the latter (and more general) case of a weakening-free
mMELL proof-net N , one can define a notion of locator of a vertex v ∈ V(N) as its unique
access path, i.e. the unique downward path that goes from the out-conclusion of a net (the
root of the corresponding term) to v, without crossing the first premiss of any ⊸-link.
Then two cut are in the same expanded redex whenever their access paths cross the same
sequence of kind of links, and for each ⊸̄-link of those they also cross the same vertex (i.e.
the conclusion on the left or the first premiss on the right).

4.4 Commutativity of reduction and expansion

In this section we show how the Taylor-Ehrhard-Regnier expansion commutes with re-
duction: reducing and then expanding a mMELL proof-net is equivalent to expanding and
then reducing it. The same result is then easily reformulated on paths as well, which im-
plies that the persistence of a path is characterised by the existence of persistent paths in
its expansion.

4.4.1 Commutativity on nets

Theorem 4.1 (Net expansion commutes with reduction step). For any mMELL net N and
any reduction ρ (ρ(N))● = ρ●(N ●) (4.32)

Proof. We obtain the equivalence of the two sides of Equation 4.32 by direct, even though
technically delicate, manipulations.

1. Firstly we get rid of some irrelevant addends from the two sides of Equation 4.32.

(a) Let N = C[R], where R is the mMELL redex of ρ for the cut, say c, and C is
its context with hole h. By definition of mMELL reduction, ρ(N) = C[ρ(R)],
so (ρ(N))● = (C[ρ(R)])●. Notice that within C● there are addends which
contain one or more copies of h and which are multi-hole simple resource
contexts; and others addends where h has been erased, and which are simple
resource nets. Let C be the sum of the former addends, and N the sum of the
latter ones. Hence, (ρ(N))● = C⟦(ρ(R))●⟧ + N .

(b) Let, N ● = C ′⟦R ′⟧ + N , where R ′ is the sum, for any c ′ ∈ c●, of the resource
redex of c ′, while C ′ is its multi-hole resource context, and N is again the sum
of any non-zero addend in N ● which does not contain any c ′ ∈ c●. Hence,
ρ●(N ●) = C ′ ⟦ρ●(R ′)⟧ + N .

Therefore, we just reduced the thesis to the equivalence between Supp (C ⟦(ρ(R))●⟧)
and Supp (C ′ ⟦ρ●(R ′)⟧).

4.4. Commutativity of reduction and expansion 77

2. We distinguish two cases, depending on the type of the redex of c, which, as per
Fact 4.4, is equal to the type of the redex of any c ′ ∈ c●.
(a) (⊸/⊸̄) Straightforward, since linear implication redexes are identical on both

sides.

i. By definition of expansion, we have that (ρ(R))● contains exactly one
element, which is equal to ρ(R). Therefore, we obtain that C ⟦(ρ(R))●⟧ =
C ⟦ρ(R)⟧.

ii. For the same reason above, R ′ is identical to R, which implies that ρ●(R ′) =
ρ(R), and also that C = C ′. We immediately obtain C ′ ⟦ρ●(R ′)⟧ = C ⟦ρ(R)⟧.

Hence, C ⟦(ρ(R))●⟧ = C ′ ⟦ρ●(R ′)⟧ which implies their respective supports are
equal, quod erat demonstrandum. ◻

(b) (!/?) This case is quite more involved from the previous one, because we have
to deal with the difference between the two notions of redexes. In the mMELL
redex we have an erasure or a duplication and a possible relocation of the argu-
ment box, while on the resource net, where all of this work has already been
performed by the expansion, the redex simply consists of a resource dispatch-
ing. Such a complexity requires a deep analysis.

i. We first consider the right side of the equation we want to prove, i.e.
C ⟦(ρ(R))●⟧. Suppose

R = ⟨u1, . . . , uk (?) c⟩, ⟨v (!) c⟩, ⟨W [B] v⟩,
⟨X1 (?) y1⟩, . . . , ⟨Xs (?) ys⟩. (4.33)

Then, as by Definition 2.15 of mMELL proof-net reduction (in particular,
see Figure 2.3b and Equation 2.5),

ρ(R) = ⟨W1 [B1] u1⟩, . . . , ⟨Wk [Bk] uk⟩,⟨X ′1 (?) y1⟩, . . . , ⟨X ′s (?) ys⟩, (4.34)

where any X ′i is obtained by replacing any occurrence of a vertex w ∈ W
with the sequence (w1, . . . ,wk) such that its elements respectively belongs
toW1, . . . ,Wk.
Now observe the reduct and observe that we can write it as follows.

ρ(R) = C ′′ [⟨W1 [B1] u1⟩, . . . , ⟨Wk [Bk] uk⟩] (4.35)
C ′′ = ⟨X ′1 (?) y1⟩, . . . , ⟨X ′s (?) ys⟩,⟨W1 ∪ . . . ∪Wk (◻) u1 . . . uk⟩ (4.36)

where the ◻-link denotes a hole h ′, whose in conclusions are written
as premisses, and its out conclusions as conclusions. Now, let C ′′′⟦⟧
be the multi-hole context obtained by splitting h ′ into k distintict holes
h1, . . . , hk such that for any 1 ≤ i ≤ k, we have hi = ⟨Wi (◻) ui⟩. Then,
since the substitution of a net in a multi-hole context duplicates it, we can
express ρ(N) as C ′′′⟦B⟧. Therefore,

(ρ(N))● = C ′′′⟦B⟧●.

78 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Furthermore, the explicit presence of the box enable us to safely decom-
pose expansion (cf. Definition 4.2), and write:

(ρ(N))● = (C ′′′)●⟦B●⟧.
ii. Now let us analyse the left side of the equation of the claim, that is

C ′ ⟦ρ●(R ′)⟧. First, we observe that there are addends of R ′ which reduce
to 0, because the arities of the two exponential links differs. Therefore,
let R ′′ be the restriction of R ′ obtained by depriving it of any R ′ ∈ R ′
such that for some reduction ρ ′ ∈ ρ●, we have ρ ′(R ′) = 0. But the re-
moved addends are irrelevant, therefore ρ●(R ′) = ρ●(R ′′), which means
C ′ ⟦ρ●(R ′)⟧ = C ′ ⟦ρ●(R ′′)⟧.
Now, by construction, any R ′′ ∈ Supp (R ′′) is necessarily made of two
exponential links of equal arity nR ′′ . Notice that in C ′ ⟦R ′′⟧, by definition
of multi-hole contexts substitution, R ′′ could be substituted only to a hole-
link with equal interface, i.e. having nR ′′ out-vertices and nR ′′ in-vertices
of corresponding types. Recall that !-link in R ′′ has been generated from
the expansion of the promotion link of R, which implies that any hole-
link compatible with R ′′ is connected to nR ′′ sub-nets being addends of
B●.
Consider now the sum C ′′ made of any multi-hole simple resource context
obtained by any C ′ ∈ C ′ by removing, in correspondence of any hole-link,
all the copies of B, and consequently extending such a hole. Hence,

C ′ ⟦R ′⟧ = C ′′
LPPPPPN ∑
R ′′∈Supp(R ′′)

⎛⎜⎜⎝R
′′,B●, . . . ,B●´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nR ′′

⎞⎟⎟⎠
MQQQQQO
,

where nR ′′ is the arity of links in R ′′. By Definition 3.8 and 4.7, its reduc-
tion corresponds to the replacement of any R ′′ ∈ R ′′ with a permutation
of their vertices. I.e.

C ′ ⟦ρ●(R ′)⟧ = C ′′
LPPPPPPPN

∑
R ′′∈Supp(R ′′)
nR ′′∈SnR ′′

⎛⎜⎜⎝[σnR ′′],B●, . . . ,B●´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nR ′′

⎞⎟⎟⎠
MQQQQQQQO
,

where for any R ′′, if u1, . . . , uk are premisses of the contraction link, and
v1, . . . , vk are those of the co-contraction link, then [σnR ′′] denotes the
vertex equation

[u ′k≡v ′σnR ′′(k), . . . , u ′k≡v ′σnR ′′(k)] .

But the presence of such a permutation is redundant with respect to the
support, because substitution in multi-hole contexts already spans over
any possible permutation of its arguments. Hence,

Supp (ρ●(N ●)) = Supp
⎛⎜⎜⎝C ′′

LPPPPPN ∑
R ′′∈R ′′ B●, . . . ,B●´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nR ′′

MQQQQQO
⎞⎟⎟⎠ .

4.4. Commutativity of reduction and expansion 79

In the last expression we could further simplify the substituens by factor-
ising the substituendum. Let C ′′′ be the series of the contexts obtained
from any non-zero addend of C ′′ by partitioning, similarly to what we
did before, any hole-link having nR ′′ out-vertices into nR ′′ distinguished
holes. Therefore, we can use a single expansion of B, and obtain:

Supp (ρ●(N ●)) = Supp (C ′′′ ⟦B●⟧) .

In the first step of the exponential case we showed (ρ(N))● = (C ′′′)●⟦B●⟧.
In the second step we proved that Supp (ρ●(N ●)) = Supp (C ′′′ ⟦B●⟧). But by
construction C ′′′ = (C ′′′)●, so we conclude. ◻

∎
Remark 4.4 (Expansion and substitution). Expansion is hardly compatible with reduction.
In order to prove Theorem 4.1, we could imagine structuring our reasoning with a sort of
substitution lemma stating that “For any proof-net C[R], where R is a mMELL redex and
C is a context, Supp ((C[R])●) = Supp (C●⟦R●⟧)”. Unfortunately, mMELL reduction has
two non-local behaviour in the dynamics of the exponential case, one of which contains
an insurmountable obstacle for such approach. The light of the old syntax of Linear
Logic allows us to discriminate the two. One non-local behaviour, probably the more
evident one, lies in box duplication and erasure, i.e. the action of reducing, respectively,
contraction and weakening. This poses no problem to expansion, since the object box is
treated as an atomic whole. The other non-local behaviour comes from box deepening
and shallowing, i.e. the action of reducing, respectively, secondary doors and dereliction.
This kind of reduction may involve other boxes, thus preventing the compositionality of
desire. We consequently prefer to tackle the proof in its entirety.

By composition, we now straightforwardly generalise commutativity between expansion
and reduction step, to reduction sequences: it suffices to iteratively apply Theorem 4.1.

Theorem 4.2 (Net expansion commutes with reduction sequence). For any mMELL net
N and any reduction sequence ρ

(ρ(N))● = ρ●(N ●) (4.37)

Proof. Let ρ = ρ1 . . . ρn. We go by induction on the length n.

1. (n = 0). Trivial: the thesis shrinks to the identity N ● = N ●.
2. (n > 0). By inductive hypothesis:

(ρn−1(. . . ρ1(N) . . .))● = ρ●n−1(. . . ρ●1(N ●) . . .).
Hence, we easily conclude applying Theorem 4.1:

(ρn(ρn−1(. . . ρ1(N) . . .)))● = ρ●n(ρ●n−1(. . . ρ●1(N ●) . . .)).
∎

80 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Remark 4.5 (Expanded redexes and Lévy families). Expanded reduction appears to be
deeply connected to the notion of parallel reduction on redex families discovered by Lévy
[1980], which reduces in a single step all the redexes belonging to a given family, i.e. all
the copies that preceding reduction created so far. Similarly, in the expansion of a net N ,
any simple resource net N ′ which does not reduce to 0, has performed all the copies being
necessary to its normalisation. For this reason, we believe that between Lévy-parallel
reduction on N equipped with an appropriate strategy (a least efficient one in terms of
number of copies), and expanded reduction on N ′, there lies a beautiful simulation. We
conjecture, indeed, that for every step ρ of the former and any corresponding step of the
latter, there is a natural bijection between the sets of simple redexes of the two.
Furthermore, we notice that the very notion of families is at the heart of the duality of
the two concepts of main interest of the present thesis: sharing and expansion. They are
somehow inverse operations on the use of arguments — the former considers any possible
number of usages, the latter minimises their representation with respect to their contexts.

4.4.2 Commutativity on paths

Lastly presented commutation result holds, indeed not surprisingly, not only for reduc-
tion on nets, but also on paths. Because of such expectedness, we present an independent
proof that is of particular interest because it enlightens deep internals of the linearisation
of Linear Logic exponential modality, explaining when, where and how path persistence
can or cannot be preserved along expansion. To better enjoy the analysis, we shall struc-
ture it in three steps. Firstly, we show that commutation holds in the core case of a redex
crossing and a single reduction step (Lemma 4.3); secondly, we enlarge our view to generic
paths (Lemma 4.4); thirdly, we generalise the result to reduction sequences (Theorem 4.3).
Lastly we derive the equivalence between mMELL persistence of a path and the existence
of persistent path in its expansion (Theorem 4.4).

Lemma 4.3. Let R be a mMELL redex, ρ be its reduction step, and χ ∈ P(R). Then:
Supp ((ρ(χ))(ρ(R))●) = Supp (ρ● (χR●)) . (4.38)

Proof. We distinguish two cases according to the type of redex.

1. T (R) = ⊸/⊸̄. Let R = ⟨v ′, v (⊸) w⟩, ⟨u ′, u (⊸̄) w⟩ as in Figure 2.3a. We imme-
diately notice that, by Definition 4.2, R● = R while, as per Definition 4.5, we have
χR

● = {χ}. We consider two sub-cases depending on the persistence of χ to ρ.

(a) ρ(χ) ≠ ∅. This implies that, by Definition 3.10 and in particular Equation 3.16,
3.17, that χ is either (v ′,w,u ′), (v,w,u), or the reversal of these. Given that
from the analysis of one case the other three can be straightforwardly obtained,
let us assume χ = (v ′,w,u ′). By definition of reduction, we have ρ(χ) ={(v ′)[v ′≡u ′]}. Moreover, by definition of path expansion, we have that

(ρ(χ))(ρ(R))● = {(v ′)[v ′≡u ′]}(ρ(R))● = {(v ′)[v ′≡u ′]} .

Let us now look at χR
● = {χ}, and consider its expanded reduction: ρ● (χR●) =

ρ● (χ). Notice that ρ● contains only one reduction step, which is identical to

4.4. Commutativity of reduction and expansion 81

ρ, because R● = R. Hence we conclude:

ρ● (χN ●) = ρ(χ) = {(v ′)[v ′≡u ′]} .

⧫
(b) ρ(χ) = ∅. Then we immediately notice that by definition of path expansion:

(ρ(χ))(ρ(R))● = ∅(ρ(R))● = ∅.

Moreover, given that, as we remarked in previous case, we have χR
● = {χ}, and

ρ● = {ρ}, we immediately conclude:

ρ●(χR●) = ρ●(χ) = ρ(χ) = ∅.

⧫
◻

2. T (R) = !/?. Let R be as in Figure 2.3b:

R = ⟨u1, . . . , uk (?) c⟩, ⟨v (!) c⟩, ⟨W [B] v⟩, ⟨X1 (?) y1⟩, . . . , ⟨Xs (?) ys⟩. (4.39)

We distinguish three sub-cases depending on the polarities of the extrema vertices
of the crossing of B.

(a) out-out. Let χ = (uj, c, v) ∶∶ β ∶∶ (v, c, uj ′). Being the most interesting one,
we shall discuss in full details this sub-case, further distinguishing two sub-sub-
cases according to the persistence of χ.

i. χ persistent to ρ. Then, by definition of mMELL path reduction (in par-
ticular Equation 2.10), j = j ′ and:

ρ (χ) = {(uj) ∶∶ βj ∶∶ (uj) [uj≡vj]} ,

where we kept trivial paths as extrema for the sake of clarity. By Defini-
tion 4.5:

(ρ(χ))(ρ(R))● = {(uj) ∶∶ βB●j
j ∶∶ (uj)}

Now let us look at the rightmost side of Equation 4.38, and apply the
definition of path expansion. If B is the h-th of them outermost boxes of
R,

(χ)R● = ∑
a∈Nm {(uj, c, vn) ∶∶ βB●n

n ∶∶ (vn, c, uj) ∣ 1 ≤ n ≤ a(h)},
so we can consider its expanded reduction w.r.t. ρ,

ρ● (χR●) = ∑
a∈Nm {ρ● ((uj, c, vn) ∶∶ βB●n

n ∶∶ (vn, c, uj)) ∣ 1 ≤ n ≤ a(h)}.
Notice that in any element of any addend of the sum, the two outermost
paths are crossings of a resource redex of exponential type. The reduc-
tion step ρ● performs by definition the reduction of any cut c ′ ∈ C ′ ∈

82 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Supp (c●), including c. Therefore, we can apply Definition 3.11 of path
reduction and in particular Equation 3.23.

ρ● (χR●) = ∑
a∈Nm
σ∈Sa(h)

{ρσ ((uj, c, vn) ∶∶ βB●n
n ∶∶ (vn, c, uj)) ∣ 1 ≤ n ≤ a(h)}

= ∑
a∈Nm
σ∈Sa(h)

{ρσ ((uj, c, vn)) ∶∶ βB●n
n ∶∶ ρσ ((vn, c, uj)) ∣ 1 ≤ n ≤ a(h)}.

By definition (cf. Equation 3.21), ρσ maps to 0 whenever the arities mis-
match, or when the permutation is not respected by all crossing; other-
wise it reduces to a trivial path. Hence, recalling that k is the arity of the
cut ?-link in R,

ρ● (χR●) = ∑
a∈Nm
σ∈Sa(h)

{(uj) ∶∶ βB●n
n ∶∶ (uj) [uj≡vσ(j)]

∣ 1 ≤ n ≤ a(h), k = a(h), σ(j) = n}.
Because of the condition on a(h), we can immediately simplify as:

ρ● (χR●) = ∑
σ∈Sk

{(uj) ∶∶ βB●n
n ∶∶ (uj) [uj≡vσ(j)] ∣ 1 ≤ n ≤ k, σ(j) = n}.

Observe that for any σ ∈ Sk there exists a unique 1 ≤ n ≤ k such that
σ(j) = n. Therefore, every addend is a singleton of a path:

ρ● (χR●) = ∑
σ∈Sk

{(uj) ∶∶ βB●σ(j)
σ(j) ∶∶ (uj) [uj≡vσ(j)] }.

Now observe that, for any {χ ′},{χ ′′} ∈ Supp (ρ● (χR●)), we have χ ′ = χ ′′,
since they are copies of the same path, within copies of the same sub-
substructure. In particular, we have ∣Sk∣ = k! equal addends, which can be
simplified in a single one, since the sum is idempotent, and conclude:

Supp (ρ● (χR●)) = {(uj) ∶∶ βB●j
j ∶∶ (uj) [uj≡vj] }

= Supp ((ρ(χ))(ρ(R))●) .

◊
ii. χ not persistent to ρ. Then, as per (2.11), j ≠ j ′ and ρ(χ) = ∅. Then,

immediately by (4.24): (ρ(χ))(ρ(R))● = 0. The analysis of ρ● (χR●) goes
as we previously did, until we reach

ρ● (χR●) = ∑
a∈Nm
σ∈Sa(h)

{ρσ ((uj, c, vn)) ∶∶ βB●n
n ∶∶ ρσ ((vn, c, u ′j)) ∣ 1 ≤ n ≤ a(h)},

where we notice that, since j ≠ j ′, there exists no σ ∈ Sa(h) such that
σ(j) = n = σ(j ′). Therefore, by Equation 3.21, in every element of
any set of the summation that we are now considering, we have that
ρσ ((uj, c, vn)) = 0 or ρσ ((vn, c, uj)) = 0. Hence, ρ● (χR●) = 0. ◊

⧫

4.4. Commutativity of reduction and expansion 83

(b) out-in. We follow the same reasoning used in previous sub-case. Let 1 ≤ j ≤ k
and 1 ≤ l ≤ s, and then let χ = (uj, c, v) ∶∶ βi ∶∶ (wl, yl). Then:

ρ(χ) = {(uj) ∶∶ βj ∶∶ (wlj , yl) [uj≡vj]} .

Hence,

(ρ(χ))(ρ(R))● = {(uj) ∶∶ βB●j
j ∶∶ (wlj , yl)} ,

where βB●j
j denotes the expansion of βj, i.e. the j-th copy of the path β, with

respect Bj i.e. the j-th copy of the box B containing β. On the other side of
Equation 4.38,

χR
● = ∑

a∈Nm {(uj, c, vn) ∶∶ βB●n
n ∶∶ (wlj , yl) ∣ 1 ≤ n ≤ a(h)}.

In this case, expanded reduction trivially deals with one cut per crossing of the
expansion. Therefore simply applying the definition of reduction, and then
simplifying by sum’s idempotence the k! equal singletons in the summation,
we obtain:

ρ● (χR●) = ∑
σ∈Sk

{(uj) ∶∶ βB●σ(j)
σ(j) ∶∶ (wlj , yl) [uj≡vσ(j)] }

= {(uj) ∶∶ βB●j
j ∶∶ (wlj , yl) [uj≡vj] },

whose support is equal to Supp ((ρ(χ))(ρ(R))●), as required. ⧫
(c) in-in. Again, along the same line of reasoning, let 1 ≤ l,m ≤ s, and let χ =(yl,wl) ∶∶ β ∶∶ (wm, ym). This time, differently from previous cases 2a and 2b,

the set that is the reduct of χmay be empty or contain more than one path (cf.
Equation 2.13).

ρ(χ) = {(yl,wlj) ∶∶ βj ∶∶ (wmj , ym) ∣ 1 ≤ j ≤ k} . (4.40)

Hence, its expansion is:

(ρ(χ))(ρ(R))● = {(yl,wlj) ∶∶ βB●j
j ∶∶ (wmj , ym) ∣ 1 ≤ j ≤ k} .

On the right side of Equation 4.38, if B is the h-th of the b outermost boxes
of R, we find that

(χ)R● = ∑
a∈Nb {(yl,wln) ∶∶ β

B●n
n ∶∶ (wmn , ym) ∣ 1 ≤ n ≤ a(h)}.

Now, consider its expanded reduction as we previously did:

ρ● (χR●) = ∑
a∈Nb
σ∈Sa(h)

{ρσ ((yl,wln) ∶∶ βB●n
n ∶∶ (wmn , ym)) ∣ 1 ≤ n ≤ a(h)}.

84 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Let us consider the persistence w.r.t. ρ● of a path χ ′ ∈ X ′, for some addend
X ′ of the sum. By definition, given a redex R ′ of some cut c ′ ∈ c●, χ ′ is
persistent if: a(h) = k ′, where k ′ is the arity of the ?-link cut in R ′ and is
equal to k, the arity of the ?-link cut in R; every crossing of R ′ in χ ′ preserves
σ ∈ Sa(h). Now, χ ′ contains no such crossing, so the second condition is
always (vacuously) satisfied. Hence, we can simplify by imposing a(h) = k
and applying the definition of exponential reduction.

= ∑
σ∈Sk

{ρσ ((yl,wln) ∶∶ βB●n
n ∶∶ (wmn , ym)) ∣ 1 ≤ n ≤ k}

= ∑
σ∈Sk

{(yl,wln) ∶∶ βB●n
n ∶∶ (wmn , ym) ∣ 1 ≤ n ≤ k}

Then, once again, k! equal addends are neutralised by sum’s idempotence:

= {(yl,wln) ∶∶ βB●n
n ∶∶ (wmn , ym) ∣ 1 ≤ n ≤ k},

and we observe that its support is equal to Supp ((ρ(χ))(ρ(R))●). ⧫
◻
∎

Lemma 4.4 (Path expansion commutes with reduction step). Let N be amMELL proof-net,
let ρ be a reduction step on N , and π ∈ PE(N). Then

Supp ((ρ(π))(ρ(N))●) = Supp (ρ●(πN ●)) . (4.41)

Proof. Let R be the redex of ρ, so that N = C[R]. Being an execution path, π is necessarily
long enough for R, so let

RCFR(π) = γ0 ∶∶ χ1 ∶∶ γ1 ∶∶ . . . ∶∶ χk ∶∶ γk (4.42)

and let γ be a path in C such that

γ = γ0 ∶∶ θ1 ∶∶ γ1 ∶∶ . . . ∶∶ θk ∶∶ γk (4.43)

where θi for any 1 ≤ i ≤ k is an atomic path crossing its hole-link. Now let us analyse
path expansion. By definition, we can express πN ●

as the appropriate substitution of any
χ ′i appearing in χR

●
i of the corresponding θ ′i appearing in γC● :

πN ● = ∑
Γ∈Supp(γC●)
X ′i∈Supp(χR●i)

{γ ′0 ∶∶ χ ′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ χ ′k ∶∶ γ ′k∣ γ ′0 ∶∶ θ ′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ θ ′k ∶∶ γ ′k ∈ Γ, χ ′i ∈ X ′i} (4.44)

Now, reduction of mMELL paths (Definition 2.20) acts on redex crossing:

ρ(π) = γ0 ∶∶ ρ(χ1) ∶∶ γ1 ∶∶ . . . ∶∶ ρ(χk) ∶∶ γk,
therefore, similarly to what we have done in Equation 4.44, we can write the expansion of
ρ(π) as the expansion of γ where we substitute any sub-path θ ′i (that is an expansion of

4.4. Commutativity of reduction and expansion 85

θ) with any expansion of ρ(χi).
(ρ(π))(ρ(N))● = ∑

Γ∈Supp(γC●)
X ′i∈Supp(ρ(χi)(ρ(R))●)

{γ ′0 ∶∶ χ ′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ χ ′k ∶∶ γ ′k∣ γ ′0 ∶∶ θ ′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ θ ′k ∶∶ γ ′k ∈ Γ,
χ ′i ∈ X ′i} (4.45)

Now let us consider the action of expanded reduction on Equation 4.44. For any set of
resource redexes R ′ in the support of the expansion of R, let ρR

′ ⊆ ρ● denote the set of
ordinary resource reduction steps acting on every redex in R ′. We distinguish two cases
according to the type of redex.

1. T (R) =⊸/⊸̄. We can directly apply Definition 3.10.

ρ● (πN ●) = ∑
Γ∈Supp(γC●)
R ′∈Supp(R●)
X ′′i ∈Supp(ρR ′(χR ′●i))

{γ ′0 ∶∶ χ ′′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ χ ′′k ∶∶ γ ′k∣ γ ′0 ∶∶ θ ′1 ∶∶ γ ′′1 ∶∶ . . . ∶∶ θ ′k ∶∶ γ ′′k ∈ Γ,
χ ′′i ∈ X ′′i } (4.46)

Therefore, from Equation 4.45 and 4.46, we deduce that it is enough to prove that

Supp (ρ(χi)(ρ(R))●) ?= Supp
⎛⎝ ∑
R ′∈Supp(R●)ρ

R ′ (χR ′●i)⎞⎠ ,

which is equivalent to the very statement of Lemma 4.3:

Supp (ρ(χi)(ρ(R))●) = Supp (ρ● (χR●i)) .

◻
2. T (R) = !/?. Similarly to the previous case, we now apply Definition 3.11 of path

reduction. This time the sum we obtain spans also over the resource permutation:

ρ● (πN ●) = ∑
Γ∈Supp(γC●)
R ′∈Supp(R●)
σ∈SR ′
X ′′i ∈Supp(ρR ′σ(χR ′●i))

{γ ′0 ∶∶ χ ′′1 ∶∶ γ ′1 ∶∶ . . . ∶∶ χ ′′k ∶∶ γ ′k∣ γ ′0 ∶∶ θ ′1 ∶∶ γ ′′1 ∶∶ . . . ∶∶ θ ′k ∶∶ γ ′′k ∈ Γ,
χ ′′i ∈ X ′′i } (4.47)

Comparing Equation 4.45 and 4.47, we reduce the statement to:

Supp (ρ(χi)(ρ(R))●) ?= Supp

⎛⎜⎜⎜⎝ ∑
R ′∈Supp(R●)
σ∈SR ′

ρR
′σ (χR ′●i)⎞⎟⎟⎟⎠ ,

which is ensured again by Lemma 4.3:

Supp (ρ(χi)(ρ(R))●) = Supp (ρ● (χR●i)) .

◻
∎

86 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Theorem 4.3 (Path expansion commutes with reduction sequence). Let N be a mMELL
proof-net, let ρ be a reduction sequence on N , and π ∈ PE(N). Then:

Supp ((ρ(π))(ρ(N))●) = Supp (ρ●(πN ●)) . (4.48)

Proof. Using Lemma 4.4, the proof reduces to a simple induction on the number of re-
duction steps in ρ̄.

1. (∣ρ∣ = 0). Trivial: (ρ(π))(ρ(N))● = πN ● = Supp (ρ●(πN ●)).
2. (∣ρ∣ > 0). Let ρ = ρ ′ρ ′′, where ρ ′ is a single step. By inductive hypothesis:

Supp((ρ ′′ (π))(ρ ′′(N))●) = Supp ((ρ ′′)●(πN ●)) .

Hence, we immediately conclude applying Lemma 4.4:

Supp((ρ ′(ρ ′′(π)))(ρ ′(ρ ′′(N)))●) = Supp ((ρ ′)●((ρ ′′)●(πN ●))) .

∎
Theorem 4.4. For any mMELL proof-net N , and π ∈ PE(N), π is persistent if and only if
there exists π ′ ∈ Π ∈ Supp (πN ●) which is persistent.
Proof. We separately prove necessity and sufficiency.

1. (⇐). By contraposition, suppose π non persistent. This means that there exists
a mMELL reduction sequence σ̄ such that σ̄(π) = ∅. Hence, (σ̄(π))(σ̄(N))● = ∅.
Therefore, by commutativity of Theorem 4.3, also σ̄●(πN ●) = ∅. This allows us to
conclude — for any Π ∈ Supp (πN ●) and for every π ′ ∈ Π, there exists some resource
reduction sequence σ̄ ′ ⊆ σ̄● such that σ̄ ′(π ′) = ∅. ◻

2. (⇒). Let σ̄ be a reduction sequence N →∗ NF(N). By hypothesis σ̄(π) ≠ ∅,
therefore (σ̄(π))NF(N)● ≠ ∅. By commutativity of expansion with reduction (The-
orem 4.3), Supp ((σ̄(π))NF(N)●) = Supp (σ̄● (πN ●)), which implies that σ̄● (πN ●) ≠
∅. Hence, there exist Π ∈ Supp (πN ●) and π ′ ∈ Π such that σ̄●(π ′) ≠ ∅. Now, since
σ̄(N) is cut-free, by Fact 4.2 it must be the case that also σ̄●(N ●) is cut-free, i.e. it
is in normal form with respect to resource reduction. Therefore, we conclude by
Lemma 3.5 that π ′ is persistent. ◻

∎
Remark 4.6 (Untyped future directions). Among results of present Section 4.3, the only
point where we used the fact that nets are typed is in the proof of Theorem 4.4, which
benefited from the consequent normalisation property. We believe that a generalisation to
full λ-calculus is possible using more sophisticated rewriting techniques, allowing obtain-
ing useful properties such as infinitary confluence. Thanks to that, the (⇒) part of the
proof could be proved by contraposition: assuming that any π ′ ∈ π● is not persistent, and
supposing σ ′π ′(π ′) = 0, one can build a sequence of expanded reduction σ● that morally
is the completion with respect to expanded reduction of the union of any σπ ′ . Now σ●
would be such that σ●(π●) = 0, implying that π not persistent.

4.5. Expansion and execution 87

4.5 Expansion and execution

Theorem 4.4 showed that persistence of a mMELL execution path π can be characterised
by the existence of persistent resource paths in its expansion. But this, in turn, can be
characterised by regularity, as established in Theorem 3.4. So we can formulate an expan-
ded variant of the notion of regularity, which characterise persistence of π using weights
of its expansion. Moreover, we can formulate a qualitative and expanded variant of the
execution formula for a ⋆-typed mMELL proof-net N . We weigh, within the rL∗ monoid,
any path in any set of the sum obtained by expanding any path in N . Such expansion-
execution is invariant with respect to mMELL reduction.

Definition 4.8 (Expansion-regularity and execution). The expanded weight of a mMELL
path π in a mMELL proof-net N is the sum of the rL∗ weights any of its comprehensive
expansions:

w●(π) = ∑
π ′∈Π∈Supp(πN●)
π ′compr.

w (π ′) . (4.49)

We call π expansion-regular if w●(π) ≠ 0. The expansion-execution of N , written Ex●(N),
is the sum of the expanded weights of any execution path in N :

Ex●(N) = ∑
π∈PE(N)

w●(π). (4.50)

Last definition is not vacuous, since a comprehensive path always inhabit the expansion
of a path, as clarified by the following fact, and could also be located by constructive
reasoning.

Fact 4.5 (Comprehensive expansions). For any persistent path π in a closed mMELL net
N ∶ ★, there exists a comprehensive path in πN ●

.

Proof. Immediate. By Theorem 4.4 there exists π ′ ∈ Π ∈ Supp (πN ●) that is persistent and
which, as per Lemma 3.3, is necessarily comprehensive. ∎
Remark 4.7 (Construction of a comprehensive expansion of a persistent path). We proved
the existence of a comprehensive path within Supp (πN ●) by an indirect and non-constructive
argumentation. Nevertheless, it is not hard to sketch an algorithmic alternative construc-
tion by shrinking any redundant expansion of N .
Notice first that N ● necessarily contains a path π ′ that is comprehensive. Indeed, for any
N ′′ ∈ N ● and for any π ′′ ∈ πN ′′

, if π ′′ is not comprehensive then we can find another
net N ′ where a path π ′, copy of π ′′, is comprehensive. Suppose that B ∈ Bxs (N) is such
that one of its expansions in N ′′ is not crossed by π ′′. Then let Pr(N ′′) be the simple
resource net obtained from N ′′ by pruning that missed copy of B. Clearly, there exists a
path Pr(π ′′) ∈ P(Pr(N ′′)) which is identical to π ′′ but it lives in a “smaller” net. There
evidently exists a fixed point N ′ = Pr(. . . Pr(N ′′)), where π ′ = Pr(. . . Pr(π ′′)) crosses
each expansion of each B ∈ Bxs (N), and it is thus comprehensive.

As expected, the notion of expanded-regularity is equivalent to path persistence in ⋆-typed
mMELL proof-nets.

88 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

Corollary 4.1. A path π is persistent if and only if π is expansion-regular.

Proof. We separately prove necessity and sufficiency. Let N be the proof-net of π.

1. (⇐). By contraposition, suppose π not persistent. Then, by Theorem 4.4, we have
that any π ′ ∈ Π ∈ Supp (πN ●) is not persistent. In particular, it is the case when π ′ is
comprehensive, but Theorem 3.4 established that any such π ′ is not regular, which
means by definition that w (π ′) = 0. Ergo, π is not expansion-regular. ◻

2. (⇒). By contraposition, suppose π not expansion-regular, which by definition
means that ∑π ′compr.∈Π∈Supp(πN●)w (π ′) = 0. Now, since in (rL∗,+) the only in-
vertible element is the identity (for any a, b ∈ rL∗, if a + b = 0 then a = b = 0), it
must be the case that w (π ′) = 0 for any π ′. Ergo, by Theorem 3.4, any comprehens-
ive π ′ ∈ πN ●

is not persistent. Now, recall that, by Lemma 3.3, every execution path
that is not comprehensive cannot be persistent. Therefore, there exists no π ′ ∈ πN ●

being persistent. Hence, by Theorem 4.4, we conclude that π is not persistent as
well. ◻

∎
More generally, the new expanded execution formula is invariant under mMELL reduction
for ⋆-typed proof-nets.

Theorem 4.5. For any mMELL proof-net N and reduction step ρ

Ex●(N) =rL∗ Ex●(ρ(N)). (4.51)

Proof. By definition, we need to show that ∑π∈PE(N)w●(π) = ∑φ∈PE(ρ(N))w●(φ). Since
by Lemma 2.2, the step ρ induces a partition on PE(ρ(N)), we may express the claim as
the equality between

∑
π∈PE(N)

w●(π) and ∑
π∈PE(N)
φ∈ρ(π)⊆PE(ρ(N))

w●(φ).
Hence, for any π ∈ PE(N), we shall prove that the followings are equal:

w●(π) and ∑
φ∈ρ(π)w

●(φ).
By definition, they are the sum of their comprehensive expansions:

∑
π ′∈Π∈Supp(πN●)
π ′compr.

w (π ′) and ∑
φ∈ρ(π)
φ ′∈Φ∈Supp(φ(ρ(N))●)
φ ′compr.

w (φ ′) .

Exploiting again Lemma 2.2, we can highlight the expansion of ρ(π) within the rightmost
summation, and obtain:

∑
π ′∈Π ′∈Supp(πN●)
π ′compr.

w (π ′) and ∑
π ′′∈Π ′′∈Supp((ρ(π))(ρ(N))●)
π ′′compr.

w (π ′′) .

4.6. Discussion 89

On the leftmost summation, by invariance theorem of rL∗ (Theorem 3.5), for any reduc-
tion step ρ ′, we have that w (π ′) =rL∗ w (ρ ′(π ′)). Consequently, iterating this argument
on any step of ρ●, we conclude that w (π ′) =rL∗ w (ρ●(π ′)). Hence, we can equivalently
compare:

∑
π ′∈Π∈Supp(πN●)
π ′compr.

w (ρ●(π ′)) and ∑
π ′′∈Π∈Supp((ρ(π))(ρ(N))●)
π ′′compr.

w (π ′′) .

On the rightmost summation, we know from commutativity Lemma 4.4 that (ρ(π))(ρ(N))●
and ρ● (πN ●) have the same support. Thus, we obtain:

∑
π ′∈Π ′∈Supp(πN●)
π ′compr.

w (ρ●(π ′)) and ∑
π ′′∈Π ′′∈Supp(ρ●(πN●))
π ′′compr.

w (π ′′) .

Recall that ρ● is equivalent to a reduction sequence σ̄ which includes a step ρ ′ redex of
ρ●. Now for any such ρ ′, we know from Theorem 3.1 that ρ● induces a bijection between
execution paths in a RIN and its reduct, provided they persist to ρ ′. Moreover, as stated
in Fact 3.1, comprehensiveness is preserved by reduction. Thus, ρ̄, hence ρ●, induces a
bijection between execution comprehensive paths πN ●

and those of ρ● (πN ●). Therefore
we can write the rightmost summation identically to the leftmost one. ∎

4.6 Discussion

4.6.1 Related works

In an inspiring paper [Ehrhard and Regnier, 2006b], Taylor expansion was already shown
to commute with head-reduction normalisation. In particular, the authors proved that for
any ordinary term t, the set of resource terms obtained by expanding the Böhm tree of t
is equal to the set of any non-zero normal form of the expansion of t. Their proof is based
on a operational view on the correspondence with a modified Krivine’s machine Krivine
[2007]. For simply typed terms, the aforementioned Theorem 4.3 of this paper generalises
such commutation property to any reduction sequence and to any choice of strategy, and
is more directly formulated and proved on paths.

4.6.2 Open questions

4.6.2.1 Infinite paths

Is there a nicely-expressible and general notion of infinite paths that allows to capture
infinite normal forms? The inspiration may come from Böhm trees and its notion of
meaningful infinite head normal form, and such a reduction strategy is already known
to be closely related both to dynamics of expansion Ehrhard and Regnier [2006b] and of
paths Laurent [2001].

90 4. Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction

4.6.2.2 Resource abstract machine for the lambda-calculus

Can we design a non-deterministic linear abstract machine inspired by the construction
presented here? In order to do so, we need to represent the expansion in a local manner,
even if it has a twofold global nature: one in the argument superposition of RC, the
other in the superposition of differently expanded terms. Removing the latter, indeed
subsumed by the former in a certain sense, the challenge becomes that of formalising a
notion of expanded execution which does not explicitly consider the expansion of the
proof-net, but which instead first assigns algebraic weights locally, and then computes
them in a distributed way. Starting from the approach presented here, the question may
be addressed by formalising expansion as a local graph-rewriting system.

4.6.2.3 Combinatorics of path expansion

What are the multiplicity coefficients for path expansion? A study of the non-trivial
combinatorial properties would complete our results, providing a tool to study the com-
binatorics of ordinary paths in λ-terms. We believe it to be connected to the normalisation
complexity and the expansion-related part of the framework to be fruitfully extendible at
a quantitative level.

Part II

Sharing and efficiency

Chapter 5

Sharing implementation of
bounded logics

Contents

5.1. Introduction 94

5.2. Elementary and light proof-nets 95

5.3. Sharing implementation 98

5.3.1 Definition 98

5.3.2 Rewriting properties 99

5.4. Adequacy properties 102

5.4.1 Correctness 102

5.4.2 Weak completeness 102

5.4.3 Optimality 103

5.5. Correctness by syntactical simulation 104

5.5.1 Unshared graphs 104

5.5.2 From sharing graphs to unshared graphs 105

5.5.3 From unshared graphs to proof-nets 106

5.5.4 From sharing graphs to proof-nets 107

94 5. Sharing implementation of bounded logics

5.1 Introduction

Sharing graphs are a fine and versatile implementation technique for graph rewriting sys-
tems, such as Λ and MELL. The sharing graphs machinery can be conceptually partitioned
into five components, each of which realizes a different type of operation.

Linear component implements the linear fragment of the target calculus, such as the mul-
tiplicatives and their cut for MELL, or a linear variant of the β that postpone the
duplication of the argument.

Duplication and sharing is the core component, also called the abstract algorithm, which
needs a new kind of graph link, called mux, that essentially implements the duplica-
tion in a distributed and atomic way. The mux propagation operation corresponds
indeed to a sort of commutation of a contraction link over links contained inside
another exponential box, or to a step of partial duplication of an argument inside
its context. Whilst the contraction link, or the λ binder construct, have only one
possible orientation — one input with several outputs — muxes allow also its dual
— one output with several inputs, which means that muxes share not only terms,
but also contexts.

Indexing management implements the exponential boxes information in a local and asyn-
chronous way. It is also called the oracle, or the bookkeeper, and it can be imple-
mented by mean of explicit hyperlinks (the bracket and the croissant), or by muxes
themselves, when all hyperlinks are labelled with indices of their box-nesting level.
It corresponds to a sort of commutation of a dereliction link over links contained
inside another exponential box.

Readback implements an unrestricted form of duplication in order to remove any sharing
in a graph and to obtain an ordinary proof-net or a plain lambda tree. From a
practical point of view, it is meant to be used at the end of the main reduction
or normalization. To do so, it interacts with other links also when they are not
connected through a cut, i.e. with their conclusion.

Garbage collection implements erasure locally, link by link, and it is either represented by
zero-ary muxes, or kept distinct by the usage of two new hyperlinks. It corresponds
to a sort of commutation of the weakening link over links contained inside another
exponential box.

This chapter is devoted to present the sharing implementation of the elementary and light
variants of mMELL, recalling its main properties and proving its correctness by syntactical
simulations. In Section 5.2we present the proof-nets of mIELL, that represent a framework
of particular convenience because it considerably simplifies the rewriting system, whilst
in Section 5.3 we introduce their sharing implementation — the system SG— and its basic
properties. A brief review of the most notable qualitative behavioural properties of SG as
a Lévy-optimal implementation of mIELL proof-nets is given in Section 5.4. Among these,

5.2. Elementary and light proof-nets 95

there is the correctness: any SG-normal-form of a mIELL proof-net N is the mIELL-normal-
form of N . A proof is given in the concluding Section 5.5 (cf. Theorem 5.10), where
we employ a simple syntactical simulation of SG in mIELL, exploiting an intermediate
rewriting system — the unshared graphs (UG) — that possess the structure of mIELL proof-
nets and a some sharing markers corresponding to SG graphs.

5.2 Elementary and light proof-nets

We present a minimal, propositional and weakening-free fragment of ELL proof-nets,
where proof-nets of the corresponding fragment of LLL can also be represented, as well as
ELL- and LLL- typed λI- terms.

A ELL proof-net is similar to a MELL proof-net, except from the fact that a vertex can
be the secondary door of at most one box. LLL proof-nets, instead, are a bit more com-
plicated, because types/formulæneed to encompass an additional exponential modality §
called paragraph1, which induces two new kinds (§ and §̄) of binary links with dual po-
larisations. Hence we have two kind of boxes, associated not only to promotion links,
but also to positive paragraph links. !-boxes have at most one secondary door, which is a
premiss of a ?-link, §-boxes have instead an arbitrary number of secondary doors, which
are premiss of links of kind ? or §̄. These two restrictions tame the amount of duplication
possibly needed by the reduction so that, quite interestingly, they are precise representa-
tions of, respectively, the complexity classes: Kalmar-elementary time (Elementary, i.e.
iterated exponentials) and polynomial time (PTime).

Fact 5.1 (Stratification). Given a LLL or ELL proof-net N , let v ∈ V(N), l ∈ L(N), ρ be
reduction step on N . If there exist ρ(v), ρ(l) residuals of v, l, respectively, then `(v) = `(ρ(v))
and `(l) = `(ρ(l)).
Theorem 5.1 (Normalisation and complexity classes [Girard, 1995, Asperti and Roversi,
2002]). Let Elementary be the set of functions that are computable in time bounded by
K(h,n), where n is the size of the input, and K is the Kalmar function defined as follows:

K(0,n) = n, K(i + 1,n) = 2K(i,n). (5.1)

Let PTime be the set of functions computable in time bounded by a polynomial of the size of the
input n.

1. The set of functions computed by ELL is equal to Elementary. In particular, the length
of a ELL reduction on a proof-net N is at most K(`(N), ∣N ∣).

2. The set of functions computed by LLL is equal to PTime. In particular, the length of a LLL
reduction on a proof-net N is at most a polynomial of degree 2`(N)+1.

We can now proceed to concretely present our simplified proof-net system and their re-
duction. We opt to avoid the presence of 0-ary contractions for mere sake of simplicity,

1The name most probably comes from an erroneous translation of the French ‘paragraphe’, i.e. ‘section’,
hence explaining the section sign § used as its symbol instead of the pilcrow �.

96 5. Sharing implementation of bounded logics

since it introduces issues of connectedness that are tedious to address, without any not-
able change with respect to the complexity aspect that is our primary concern. Classical
formulations of ELL and LLL were primarily obtained by mean of more traditional, per-
haps orthodox, approaches: sequent-calculi. This is indeed the case both for the original
presentation by Girard [1995] of LLL and ELL, as well as in the simplifications proposed
by Asperti and Roversi [2002], i.e. ILAL and IEAL, where weakening is generalised in its
affine form, i.e. the conclusion of such a rule is not required to be a formula/type in the
form !T , but can be of any kind. With respect to other proof-nets presented in previous
chapters, we still employ the generalised n-ary syntax for negative exponentials, but we
drop the polarised [Laurent, 2002] restriction on formulæ/types.

Recall from Section 2.2 the definitions of mMELL pre-nets and, in particular, of boxing
function (see Definition 2.4). Our proof-net system is obtained by variation of mMELL
proof-nets, where we also remove boxes, — that are useless because of the stratification
property — replacing the boxing function by a depth level annotation.

Definition 5.1 (Types). A type, or formula, is a word of the following grammar, where ⋆
is the only ground type.

T ∶∶= ★ ∣ T ⊸ T ∣ !T . (5.2)

Definition 5.2 (Elementary boxes). Given a pre-net P and a !-link l ∈ L(P), let b be a
boxing function. If according to b every vertex is the secondary door of at most one box,
then b is an elementary boxing. Formally, if b(l) = B, for some sub-pre-net B ⊆ P, and v
is a secondary door of B, then there exists no other !-link l ′ ∈ L(P) such that b(l ′) = B ′
and v is a secondary door of B ′.
Definition 5.3 (mIELL proof-nets). Given a mMELL proof-net (P, b), we say N = (P, `)
is a mIELL proof net if: arity of links in L(P) is strictly greater than 0, P has a typing
function in T , b is an elementary boxing, ` is the depth according to b. A box in N is the
maximal sub-pre-net P ′ ⊆ P such that, for any v ∈ B we have `(v) ≥ l, for some l ∈ N.

Proposition 5.1. Any minimal weakening-free proof-net of ELL or LLL can be encoded as a
mIELL proof-net.

Proof sketch. The case of IEAL is immediate, since it suffices to remove second order links.
The case of ILAL simply additionally requires the replacement of §-links with !-links and
§̄-links with ?-links, so that §-boxes become !-boxes. ∎
Definition 5.4 (mELL and mLLL reduction). The rewriting relation →mIELL is the graph-
rewriting relation on mLLL or mLLL proof-nets, obtained by the context closures of the
union of the following two redexes:

Logics (⊸), as defined in Figure 5.1;

Duplication (D) as defined in Figure 5.2.

Since there will be no chance of ambiguity, in the present and next chapters of this second
part, we shall refer to mIELL proof-nets simply as proof-nets.

5.2. Elementary and light proof-nets 97

Figure 5.1 Linear implication reduction

⊸
• u2

in

•u1

out

⊸̄
•w

in

• v1

in

• v2
out

out →⊸
• u2 = v2

• u1 = v1

Figure 5.2 Duplication reduction

?

•v0

out

• vh

out

. . .

!

• z
out

in

B

•
in

•
in

. . .
U1 Uk

• w

out

in

•V1 • Vk
. . .

?

• u1

in

?

• uk

in

. . .

out out
out

→D

B0

•
in

•
in

. . .
U10

Uk0

• v0

out

Bh

•
in

•
in

. . .
U1h

Ukh

• vh

out

. . .

•V1 • Vk
. . .

?

• u1

in

?

• uk

in

. . .

out

out
out

98 5. Sharing implementation of bounded logics

Figure 5.3 SG links: kind, arity and polarity associated to vertices, in both graphical
and textual notations. Above, from left to right: abstraction, application, promotion,
contraction (or weakening when n = 0); Below, positive and negative mux, with k > 1.

⊸
vout

uin2uout1

⟨uout1 , uin2 (⊸) vout⟩

⊸̄
uout2

uin1vin

⟨uin1 , uout2 (⊸̄) vin⟩

!

vout

uin

⟨uin (!) vout⟩

?

uout1 uoutn

vin

. . .

⟨uout1 , . . . , uoutn (?) vin⟩

⟨uout1 , . . . , uoutk (∣+⟩n) vin⟩ +
•
in

•
out

•
out

. . .

−
•
in

•
in

. . .

•
out

⟨uin1 , . . . , uink (∣-⟩n) vout⟩

5.3 Sharing implementation

In this section we introduce sharing graphs and their reduction, and we recall the most
important qualitative behavioural properties, as a rewriting system. About the peculiar
tracts of the present formulation with respect to previous literature, some clarification
are in order. First, sharing nodes are n-ary muxes, and not binary fans, and are directly
introduced by the reduction itself by a "triggering" rule that replaces the two main links
of exponential redex by a mux, and not by means of an initial translation, and they are
dually removed by a "merging" rule. Second, since the propagation of a unary mux would
be nothing but a redundancy, which will be not quite desirable when in the Chapter 6 the
efficiency will be our primary concern, the triggering is allowed only for contractions with
arity greater than 2. Third, two unneeded components are excluded by the formulation.
The level-management component, or the oracle, which dynamically adjust depth of other
links, is made useless by the stratification property. The garbage collector, which erases
links, is made useless by the absence of weakening we imposed.

5.3.1 Definition

The core of sharing graphs are multiplexer links, or muxes. From the input-output point
of view, the positive mux is close to the contraction ?-link, its conclusion being the input
of the link, and its k premisses being its outputs. It makes the sub-term rooted in input
available in output contexts. A negative mux conversely has its k premisses as input and
its conclusion as output. It shares the output context to the various subterms rooted in its
inputs.

To our knowledge, no geometrical correctness criterion has been found, which would
allow to discriminate when an arbitrary graph built with logical links and muxes represent
correct proof-net without unfolding it. The set of sharing graphs is therefore defined as
the transitive closure of the sharing and read-back reductions on proof-net.

Definition 5.5 (SG pre-nets and reductions). A SG link is a link having kind in {⊸

5.3. Sharing implementation 99

Figure 5.4 Logical redexes.

(a) Linear implication.

⊸
⊸̄
u

u ′

v
v ′

w → ⋅ v ′≡u ′

⋅ v≡u

(b) Light exponential, when k = 0, and mux triggering, when
k > 0.

?

•v0

out

• vk

out

. . .

n

!

• u
in

• w
out

n

in →t

k > 0
+ n

• u
in

•v0
out

• vk
out

. . .

! ←
k = 0

• v0 = u

, ⊸̄, !, ?, ∣+⟩, ∣-⟩} and whose arity and assigned polarities are determined by the link’s kind,
as shown in Figure 5.3. Links of kind ∣+⟩, ∣-⟩ are called multiplexers, and have one conclu-
sion and k > 1 premisses. The rewriting relation →SG is the graph-rewriting relation on
SG pre-nets, i.e. pre-nets made by SG links, obtained by the context closure of the union
of following redexes.

Logics (⊸), (!), (t), defined in Figure 5.4a and Figure 5.4b.

Duplication (d⊸), (d⊸̄), (d!), (d?), defined in Figure 5.5a, 5.5b, 5.5c and 5.5d.

Mux interaction (a), (s), defined in Figure 5.6a and 5.6b.

The rewriting relation→RB is the context closure of the union of the mux interaction rules
and

Readback duplication (r⊸), (r?), (m), as defined in Figure 5.7, 5.8b and 5.8a.

The RB-normal form of a graph G is called its read-back and written R(G). We shall denote
as → SGRB the union of the SG and RB relations.

Definition 5.6 (SG graph). A SG graph is either a mLLL proof-net, or the reduct of a SG
graph via SG- or RB-reduction.

Remark 5.1. The merging rule (m) of RB requires that the level n of the mux and the
level m of contraction are equal, while (r?) requires that m > n. In the more general
case of MELL, the main vertex of a (m) redex may be a secondary door of a number of
boxes, therefore the definition requires m ≤ n. We recall that in the case of mIELL that
we are considering here, it cannot be the case that m < n, which would cause the mux
to be deadlocked (see Guerrini [1999], or employ l-contexts that will be introduced in
Section 6.4).

5.3.2 Rewriting properties

Sharing graphs with SG-reduction form an orthogonal rewriting system: for every hyper-
link h in a given graph there exists at most one reduction involving h, that is the inter-
action along the unique principal door of h. Indeed, they are interaction nets, therefore

100 5. Sharing implementation of bounded logics

Figure 5.5 Duplication redexes, wherem > n.
(a) Positive linear implication link.

+ n

• w
in

•v0
out

• vk
out

. . .

⊸
• u2

in

•u1

out

out →d⊸

⊸
• v0

out

• z20

in

⊸
• vk

out

• z2k

in

. . .

+ n

• u2

in

out
out

− n

•z10

in
• z1k

in
. . .

• u1

out

•

out

•

out

(b) Negative linear implication link.

⊸̄
•w

in

• u1

in

• u2

out

− n

•v0
in

• vk
in

. . .

out
→d⊸̄

− n

•z20

in
• z2k

in
. . .

• u2

out

⊸̄
•v0

in

• u20

in ⊸̄
•vk

in

• u2k

in
. . .

out
out

+ n

• u1

in

out
out

(c) Elementary promotion

+ n

• w
in

•v0
out

• vk
out

. . .

!

• u
in

m

out
→d!

!

• z0
in

• v0
out

m !

• zk
in

• vk
out

m. . .

+ n

• u
in

out
out

(d) Elementary contraction

?

• w
in

•u0

out

• uh

out

. . .

m

− n

•v0
in

• vk
in

. . .

out
→d?

− n

•z00

in
• zk0

in
. . .

• u0

out

− n

•z0h

in
• zkh

in
. . .

• uh

out

. . .

?

• v0
in

?

• vk
in

m m. . .

out out
out

Figure 5.6 Mux interaction redexes.

(a) Annihilation.

+ n

• w
in

•u0

out
• uk

out
. . .

− n

•v0
in

• vk
in

. . .

out
→a •

u0 = v0
•

uk = vk. . .

(b) Swap, wherem ≠ n

+ n

• w
in

•u0

out
• uk

out
. . .

− m

•v0
in

• vh
in

. . .

out
→s

− m

•z00

in
• z0h

in
. . .

• u0

out

− m

•zk0

in
• zkh

in
. . .

• uk

out

. . .

+ n

• v0
in

+ n

• vh
in

. . .

out out out

Figure 5.7 Readback of negative implication, wherem > n.
+ n

• u2

in

•v0
out

• vk
out

. . .

⊸̄
•u0

in

• u1

in

out →r⊸̄

⊸̄
•z00

in

• z10

in

• v0
out

⊸̄
•z0k

in

• z1k

in

• vk
out

. . .

+ n

• u0

in

out

+ n

• u1

in

out
out

5.3. Sharing implementation 101

Figure 5.8 Readback redexes on contraction.
(a) Merge into contraction, whenm = n.

• u0

+ n

• ui

in

•v0
out

• vh
out

. . .

. . . • uk
. . .

?

• w
in

m

out out

out

→m

•v0 • vh. . .

•u0 • ui−1. . . •ui+1 • uk. . .

?

• w
in

n

(b) Duplication, whenm > n.

• u0

+ n

• ui

in

•v0
out

• vh
out

. . .

. . . • uk
. . .

?

• w
in

m

out out

out →r?

•v0 • vh. . .

− n

•z00

in
• z0h

in
. . .

• u0

out

− n

•zi−10

in
• zi−1h

in
. . .

• ui−1
out

. . . − n

•zi+10

in
• zi+1h

in
. . .

• ui+1
out

− n

•zk0

in
• zkh

in
. . .

• uk

out

. . .

?

• y0
in

m ?

• yh
in

m. . .

out out
out out

+ n

• w
in

out
out

102 5. Sharing implementation of bounded logics

they are locally confluent. The RB-reduction includes instead many rules which allows
interactions between links that are not connected by their principal vertices. But In this
case, as well as in the combined one, the system still enjoys good rewriting properties.

Theorem 5.2 (Confluence and normalisation). The rewriting systems RB and SGRB are
strongly normalising and confluent. Their normal forms are proof-nets.

Proof hint. With respect to the work by Guerrini et al. [2003, Theorems 4, 11.i and 11.ii],
we have here only two minor differences: axioms and cut links are implicit, read-back
rules are restricted to positive muxes only. ∎
Any SGRB sequence can be rearranged in order to postpone the read-back, i.e. the non-
optimal duplications, at the end of the sharing normalisation. This is indeed the standard
way of employing sharing graphs as an implementation.

Theorem 5.3 (Safety of laziness [Guerrini et al., 2003, Theorem 15]). Let N be a proof-net
and N̄ its SGRB -normal form. If G is the SG-normal form of N , then G →∗

RB N̄ .

5.4 Adequacy properties

5.4.1 Correctness

Sharing graphs are a correct implementation of cut-elimination of proof-nets.

Theorem 5.4 (Correctness). Let N be a proof-net such that N →∗
SG G. Then there exists

N →∗
mIELL R(G).

The correctness of the sharing implementation in the general case of λ-calculus was first
established using a semantical analysis of GoI paths in the graphs [Gonthier, Abadi, and
Lévy, 1992a]. A comprehensive discussion is provided by Asperti [1998]. The first results
of correctness obtained by syntactical means has been presented by Guerrini [1999], where
sharing graphs implements a generic framework of graph rewriting, and little later by
Guerrini et al., who consider [2003, Theorem 13] the case of MELL proof-nets. In a
restricted case similar to our interest — IEAL and ILAL proof-nets — correctness was also
more recently proven with GoI-like semantics tools [Baillot, Coppola, and Dal Lago,
2011].

We shall use an adaptation of the syntactic approach, based on an intermediate rewriting
system called unshared graphs. The stratification property of mIELL allows us to prove
correctness by a simpler and neater presentation, provided here in Theorem 5.8.

5.4.2 Weak completeness

If we forget optimality, we can consider the rewriting system where all the duplication
rules are allowed, i.e. where muxes are allowed to propagate exhaustively and to complete

5.4. Adequacy properties 103

every box duplication process. Then SGRB reduction can simulate any standard mIELL
reduction, simply by using a strategy which prioritises RB rules and which thus always
performs exhaustive box duplications.

Theorem 5.5 (Suboptimal completeness). For every proof-net N and every reduction N −→
mIELL N ′ there is a reduction N −→+

SGRB N ′.

N

G

N ′∗
mIELL

∗
SGRB

Indeed, the canonical reduction strategy on sharing graphs applies the read-back only at
the end of a sharing normalisation, in order to maximise sharing and its efficiency. In this
case with two reduction phases, the sharing implementation is complete with respect to
normalisation.

Theorem 5.6 (Normalisation completeness). For every proof-net N that mIELL-normalises
N̄ , there are a sharing reduction and a read-back reduction such that N −→∗

SG Ḡ −→∗
RB N̄ .

Diagrammatically:

N
Ḡ

N̄∗mIELL

∗
SG ∗

RB

A proof by semantic reasoning for the very similar framework of mLLL proof-nets is given
by Baillot et al. [2011, Theorem 4], whilst a syntactical one for λ-calculus is presented in
Asperti and Guerrini [1998, Theorem 7.9.3.ii].

5.4.3 Optimality

Finally, we recall that any strategy of SG-reduction which lazily postpones mux rules
minimises the number of logical steps.

Theorem 5.7 (Optimality). SG-reduction implements Lévy optimal reduction.

In the setting of MELL proof-nets, a hint to a proof argument is presented by Guerrini et al.
[2003, Theorem 14]. In the λ-calculus case, instead, one can find a formal statement and
a complete proof, once again, in the comprehensive presentation by Asperti and Guerrini
[1998, Theorem 5.6.4].

104 5. Sharing implementation of bounded logics

5.5 Correctness by syntactical simulation

In this section we present unshared graphs and their dynamics. Also, we detail the sim-
ulation of sharing reduction by unshared reduction, which allows us easily transfer some
qualitative properties from the latter to the former. Since it is trivial to define a simula-
tion of unshared graphs by proof-nets, we obtain by composition also a simulation of the
sharing reduction by proof-nets reduction, which enable us to conclude the correctness of
the sharing implementation. Such simulation will also be used in page 109 to accomplish
the complexity comparison between the two. This essentially constitutes a simplified re-
phrasing of the syntactical proof of the correctness of SG with respect to MELL [Guerrini,
1999, Guerrini, Martini, and Masini, 2003].

5.5.1 Unshared graphs

From a static point of view, the unshared graphs are a variation of sharing graphs, where
muxes are necessarily unary and called lifts.

+
•
in

•
out

−
•
in

•
out

The dynamics of the unshared system is defined similarly to sharing graph’s one. We
obtain UG-graphs as the reflexive transitive closure of the unshared reduction rules −→UG

on the class of proof-nets. The only difference in the definition of UG-reduction with
respect to SG-reduction is the replacement of the mux triggering rule (t), which could be
fired on a cut between a non-unary contraction and a promotion. Such a rule is replaced
with a new rule (tD) that is depicted in Figure 5.9. If the ?-link has h + 1 premisses,
the rule not only duplicates the box creating h new copies of it, very similarly to (D)
rule of mIELL-reduction (cf. Figure 5.2), but it also triggers the creation of h + 1 lifts,
morally where a h+ 1-ary mux would have been created by a (t) step of SG-reduction (cf.
Figure 5.4b).

Definition 5.7 (UG reductions and graphs). The unshared reduction is the rewriting rela-
tion →UG given by the union of the followings.

Logics (⊸), (!), (tD), defined in Figure 5.4a, 5.4b (when k = 0) and 5.9 (when k > 0).
Duplication (d⊸), (d⊸̄), (d!), (d?), defined in Figure 5.5a, 5.5b, 5.5c and 5.5d.

Mux interaction (a), (s), defined in Figure 5.6a and 5.6b.

The unshared read-back →RB consists of the same rules of the RB-reduction (cf. Defini-
tion 5.5). The union of these two reduction relations is written UGRB. A UG graph is
either a mIELL proof-net, or the reduct of a UG graph via UG- or URB-reduction.

5.5. Correctness by syntactical simulation 105

Figure 5.9 Duplication and triggering rule (where h > 1).
?

•v0

out

• vh

out

. . .

n

!

• z
out

n

in

B

•
in

•
in

. . .
U1 Uk

• w

out

in

•V1 • Vk
. . .

?

• u1

in

n ?

• uk

in

n. . .

out

n

out

n
out

→tD

+ n

• v0
out + n

• vh
out

B0

•
in

•
in

. . .
U10

Uk0

• w0

out

in

Bh

•
in

•
in

. . .
U1h

Ukh

• wh

out

in

. . .

•V1 • Vk
. . .

?

• u1

in

?

• uk

in

. . .n

out

n

out
out

5.5.2 From sharing graphs to unshared graphs

We aim at a relation between sharing graphs and unshared graphs which relates pairs(G,U) such that U represent the unfolding of the proof or term which is compressed
in G. The idea is to have a graph morphism relating, when possible, a mux m in G to
the lifts l1, . . . , lk in U so that the subgraph shared by m corresponds to the subgraph
scoped by each of li (with 1 ≤ k). This allow us to interpret lifts as sharing markers which
demarcate the boundary of shareable sub-proofs. Every SG-sequence has indeed a natural
simulation by means of a UG-sequence, while any RB-sequence similarly can be simulated
by a URB-sequence. In both cases, the simulation preserves the unfolding relation.

N

G

U

∗
SG

∗
UG

N

G

U

G ′

U ′

∗
SG

∗
UG

∗
RB

∗
URB

Definition 5.8 (Sharing morphism). A sharing morphismM is a surjective homomorph-
ism on sharing graphs that preserves the kind, the vertex label, and the level of links. A
sharing graph G unfolds to an unshared graph U , written G ↪ U , if there is a sharing
morphism M such that M(U) = G. We shall use the same notation to relate vertices
and links: if w ∈ V(G) and W ⊆ V(U) we write w ↪ W to mean M(W) = v, while if
m ∈ L(G) andM ⊆ L(U) we writem↪M forM(M) =m.

Fact 5.2. Let G ↪ N respectively be a SG-graph and a mIELL proof-net, and assume that
R↪ R, for some R ⊆ G and some set R of sub-proof-net of N . If R is an SG-redex then R is a set
of UG-redexes. In particular, if R is a (t)-redex, then any R ′ ∈ R is a (tD)-rule, otherwise R,R ′
are of the same kind.

Lemma 5.1 (UG simulates SG). For any proof-net N such that N −→∗
SG G exists a UG-graph

106 5. Sharing implementation of bounded logics

U ′ such that N −→∗
UG U and G ↪U .

Proof. We proceed by induction on the SG-reduction sequence σ̄. The base case is trivial,
so let σ̄ = σ̄ ′σ for some SG-sequence σ̄ ′ and some SG-step σ; and let r be the redex of
σ. By inductive hypothesis (IH), M ′(µ̄ ′(N)) = σ̄ ′(N) for some sharing morphism M ′.
Consider the set of redexes R in U such that r ↪ R. Now, any r ′ ∈ R is a redex, as
per Fact 5.2, and it is disjoint to any r ′′ ∈ R, by orthogonality of the definition of UG-
reduction. So let µ̄ be a reduction sequence reducing all and only r ′ ∈ R. It is now easy
to define M from M ′, so that it maps any residual of r ′ into the residual of r. Hence,
M(µ̄(µ̄ ′(N))) = σ(σ̄ ′(N)). ∎
Lemma 5.2 (URB-reduction simulates RB-reduction). For any SG-graph G and UG-graph
U such that G ↪U , if G −→∗

RB G ′ then U −→∗
URB U ′ and G ′ ↪U ′.

Proof sketch. Almost identical to the proof of previous Lemma 5.1. The only difference
worth to mention is the fact that the set of UG-redexes simulating a (m)-step overlaps, but
this poses no problem, since they enjoy pair-wise confluence. ∎
Definition 5.9 (Unfolding reduction). Let σ̄ be a SG- or RB-reduction sequence on a
proof-net N , and let µ̄ be a UG- or RB-reduction sequence on U . If σ̄(N) ↪ µ̄(N), and
µ̄ is defined as in the proof of Lemma 5.1, then we call it an unfolding reduction of σ̄, and
we write σ↪ µ.

5.5.3 From unshared graphs to proof-nets

Unshared graphs can be straightforwardly mapped to proof-nets: it suffices to wipe out
all the lift, and to recover the lost connections in the hypergraph. Hence, every unshared
reduction can be simulated by the proof-net reduction.

Lemma 5.3 Lemma 5.4

N

U

N ′

∗
UG

∗
mIELL

N

U

N ′

U ′∗
UG

∗
mIELL

∗
URB

Definition 5.10 (Lift erasure). The lift erasing is a function which maps a UG-graphs U
to a proof-net N , written U ↦ N or E(U) = N , by equating any pair of vertices u, v
such that there exists ⟨u (∣*⟩) v⟩ ∈ L(U). We extend the function ↦ to vertices and links
belonging to some unshared graph.

Lemma 5.3 (mIELL simulates UG). Let N be a proof-net. If N →∗
UG U ′ ↦ N ′ then there

exists a reduction such that N →∗
mIELL N ′.

Proof. By induction on the UG-sequence µ̄ it is easy to build the mIELL-sequence ρ̄ con-
taining the matching redex, if present.

5.5. Correctness by syntactical simulation 107

1. If a step µ is of type (⊸) or (!) on some redex R then R ′ ← [R is a redex of the same
type. When the step is of type (tD), then corresponding R ′ is a (D)-redex. In both
cases, let ρ be the step reducing R ′. It is immediate to note that µ(U)↦ ρ(N).

2. Otherwise µ is one of {(d ⊸), (d⊸̄), (d!), (d?), (a), (s)} and has no counterpart
in mIELL-reduction. In this case let ρ̄ be the empty sequence. The claim still holds,
because the erasing of the UG-reduct is unchanged.

∎
Lemma 5.4 (Correctness of URB-reduction). For any UG-graph U and any proof-net N
such that U ↦ N , if U −→∗

URB U ′ then U ′ ↦U .

Proof. Identical to the proof of previous Lemma 5.3, in particular to its second case. ∎
Definition 5.11 (Erasing reduction). Let µ̄ be a UG- or URB-reduction sequence on a
proof-net N , and let ρ̄ be a mIELL-reduction sequence on N . If µ̄(N) = E(ρ̄(N)), and ρ̄
is defined as in the proof of Lemma 5.3, then we call it an erasure reduction of µ̄, and we
write σ↦ µ.

5.5.4 From sharing graphs to proof-nets

If we erase the lifts from an unshared graph of the unfolding of a sharing graph, we obtain
the proof-net that is implemented by it. We show that the sharing and readback reductions
are correct with respect to the proof-net reduction and the implementation. Therefore,
the read-back normalisation of a SG-graph is equal to the proof-net it implements.

Theorem 5.8 Theorem 5.9 Corollary 5.1 Theorem 5.10

N

G

N ′

∗
SG

∗
mIELL

N

G

N ′

G ′∗
SG

∗
mIELL

∗
RB

N

G

N ′

∗
SG

∗
mIELL

∗
RB

N

Ḡ

N̄

∗
SG

∗
RB∗
mIELL

Definition 5.12 (Sharing implementation). The sharing implementation is the relation
between sharing graphs and proof-nets obtained by composition of erasure and unfolding.
A proof-net N is implemented by a sharing graph G, written G ↣ N , where there is
UG-graph U such that G ↪U ↦ N .

Theorem 5.8 (mIELL-reduction simulates SG-reduction). Let N be a proof-net. If N →∗
SG G

then there exists N →∗
mIELL N ′ such that G ↣ N ′.

Proof. Immediate from Lemma 5.1 and Lemma 5.3. ∎
Theorem 5.9 (Correctness of read-back reduction). For any sharing graph G and proof-net
N ′ such that G ↣ N ′ and G,N ′ have a common proof-net ancestor N , if G −→∗

RB G ′, then
G ′ ↣ N ′.

108 5. Sharing implementation of bounded logics

Proof. Immediate from Lemma 5.2 and Lemma 5.4. ∎
Corollary 5.1 (Correctness of read-back normalisation). For any proof-net N , let N ′ and
G respectively be a proof-net such that N −→∗

mIELL N ′, and a sharing graph such that N −→∗
SG G.

If G −→∗
RB N ′ then G ↣ N ′.

Proof. Immediate, by considering normalisation and confluence property of read-back
reduction, and the fact that any RB-normal form is a proof-net. ∎
Theorem 5.10 (Normalisation correctness). For every proof-net N , if it normalises with a
sharing reduction and a read-back reduction N −→∗

SG Ḡ −→∗
RB N̄ , then there is a normalisation

N −→mIELL N̄ .

Proof. Immediate, because the mIELL-reduction is the simulation of a SG-normalisation
(cf. Theorem 5.8). ∎

Chapter 6

Efficiency of sharing
implementation

This chapter analyses the complexity of SG reductions with respect to mIELL reduction,
proving that the former cannot be outperformed by the latter, up to a quadratic factor.
Section 6.1will provide an introductive description of the proof, while outlining the whole
chapter.

The results presented here have been developed in collaboration with Guerrini, and pre-
viously communicated only in a preliminary form [Guerrini, Leventis, and Solieri, 2012].
The main technique significantly extends an embryonic formulation by the author (2011),
that allows to bound the overhead of SG-implementations of IEAL proof-nets, or ILAL
ones, only with an elementary function, respectively a polynomial one.

Contents

6.1. Introduction 110

6.2. Cost measures 112

6.3. Input/output paths 113

6.3.1 Statics 114

6.3.2 Dynamics 115

6.4. Sharing contexts 117

6.4.1 Variable occurrences and sharing contexts 117

6.4.2 Positivity 120

110 6. Efficiency of sharing implementation

6.4.3 Path irrelevance 132

6.5. Unshared cost of reductions 133

6.5.1 Share 133

6.5.2 Unshared cost of mIELL reduction 134

6.5.3 Unshared cost of SG reduction 142

6.6. Unshared cost comparison 146

6.7. Discussion 149

6.7.1 Related works 149

6.7.2 Open questions 150

6.1 Introduction

SG and mIELL are two reduction systems that, although equivalent with respect to norm-
alisation, and although tightly related by a simulation, present a substantial behavioural
difference in the way they perform the duplication. The latter has only one big-step du-
plicating rule, i.e. (D), whose cost cannot be bounded by a constant, since it depends
on the size of the duplicated box. The former has instead several small-step duplicating
rules, that are the initial (t), plus the various (dκ) and (rκ), and the rest of mux rules. In
all these cases, the cost is essentially atomic, because the only variable is the arity of the
mux. Because of this, we shall first define two different cost notions for SG and mIELL
reductions (Section 6.2).

Let us look at the mIELL-simulation of a SG reduction, and in particular at the UG reduc-
tion sequence between them. Given the trivial role of lifts for the UG rewriting system —
they simply propagate themselves, commuting with all other links — once we label lifts
with unique names preserved under copy, it is possible to identify, for every vertex and
link in the graph, the exact set of lifts (or their copies) that eventually will come there
along any reduction. In order to do so, given the simplicity of lift dynamics, it’s hardly
worth bring a GoI approach into its analysis, together with straight paths, which loop
back and forth around the graph. It suffices to consider a new kind of paths, called in/out
paths, which goes always downward, or upward, with respect to figures, i.e. they always
travel from output to input, or vice versa (Section 6.3). Then, on a given path we are able
to statically inspect the sequence of lifts and infer their behaviour: positive ones need to
be propagated downward, negative ones upward, lifts on the same level erase each other.
To formalise this, we do not need the complexity of the dynamic algebra, since it can be
algebraically modelled as a language of parentheses called sharing contexts (Section 6.4).
The rough intuition behind them is that () = [] = 1, while (] = [) = 0. We shall
prove that the sharing contexts assigned to rooted paths cannot be 0 nor begin with a

6.1. Introduction 111

closed parenthesis, i.e. a negative lift (Proposition 6.1). Moreover, as anticipated, we show
that sharing contexts morally belong to vertices, rather than paths, because rooted paths
reaching the same vertex always carry the same context (Lemma 6.14).

With the aid of these tools, on the one hand, we can determine the set of sub-graphs
of a UG graph U where a lift propagation will happen. We shall call it the share of U
(Subsection 6.5.1). On the other hand, among a set of lifts that are the unfolding of a mux
m with k + 1 premisses, we can select which lifts are the original instances, i.e. created by
the (tD)-step which simulates the (t)-step that creates m, and which are their copies, i.e.
duplicated by other (tD)-steps. We shall call the latter ones boundary lifts and show that
their number is equal to the arity k of the mux.

We then obtain the key point to precisely transfer (Section 6.5) and compare (Section 6.6)
the costs of mIELL and SG reductions in UG reductions. On the mIELL side, they key idea
is to count the size of removed share. The (tD)-step can then have a constant cost, because
the share grows exactly as the size of the duplicated box. Moreover, when (dκ) and (rκ)
rules involve boundary lifts, they shrink the share, so they also have a constant cost.
But on the SG side, we already noticed that lift movements are costly only when they
are boundary, so the cost of duplications match between the two systems: the SG-cost
(beside an additional technical detail) is bounded by a linear function of the mIELL-cost
(Lemma 6.20).

What about the other rules (Lemma 6.22)? The logical rules (⊸) and (!) and (t) are
obviously the ones where SG outperforms mIELL. Indeed, each redex R in a SG graph G
has exactly one image in the simulating U that does not belong to the share, so we can say
that this ‘master copy’ is the costly one, from the point of view of SG reduction, whilst all
the other shared redexes have no cost. Conversely, these latter images of R (there is at least
one) are costly with respect to mIELL reduction, since they remove links and vertices from
the share. Even more, each of them has double cost: the instantiation and the elimination.
Therefore, for this portion we obtain a loose linear bound for SG-cost.

Last1 we proceed to discuss annihilations, merges, swaps, which at a first glance they are
the most difficult. Once again, we can transfer exactly the SG cost of a step of this kind to
the simulating UG sequence:

i. the rules (a) and (m) are costly when involve boundary lifts;

ii. the rule (s) is costly when creates new boundary lifts.

Rules of case (i) produce no variation at all in the size of the share, so we are forced
to provide a bound by external considerations. We limit the number of boundary anni-
hilations and merges to the cost of other operations — any boundary lift destruction is
necessarily preceded by a lift creation, at most equal to the cost of other operations — so
we have a linear overhead here also.
Rules of kind (ii), instead, usually produce an atomic decrease to the size of the share,
hence they introduce no overhead. But this is not always the case: we have no share de-
crease if the (s) redex is contained in a share component made by nothing but lifts. The

1... and least!

112 6. Efficiency of sharing implementation

number of such operations grows with the product of the depth level of the graph and the
square of the mIELL cost.

Hence, given the appropriate cost definitions CmIELL and CSG (Section 6.2), we will be able
to prove that the overhead of an SGRB-reduction, i.e. including the read-back rules, with
respect to its mIELL simulation is at most quadratic.

Theorem 6.1 (SG cost bound). Let N be a proof-net such that N σ̄−−→∗
SGRB G ′ and N ρ̄−−→∗

mIELL N ′, where G ↣ N ′. Then there exists a quadratic function f such that

CSG(σ̄) ≤ f(CmIELL(ρ̄)). (6.1)

6.2 Cost measures

We now assign a cost to mIELL and SG reductions. Although a formulation that employs a
unique a priori notion for both the reductions would look at a first glance more elegant and
clean, we introduce some differences between the two. Such constant, and thus morally
negligible, initial asymmetry will later repay with symmetries that ease our accounting.
The mIELL cost counts for the size, i.e. the number of vertices and links, that are erased
and/or added to the graph.

Definition 6.1 (Size). The size of a pre-net P, written # (P), is the sum of the cardinality
of the set of its vertices and the sum of the arities of its links:

(P) = ∣V(P)∣ + # (L(P)) , (6.2)
(L(P)) = ∑

l∈L(P) ∣l∣. (6.3)

We remark that for a box ⟨u1, . . . , uk [B] v⟩, all of its doors, primary and secondary
ones, belong to the sub-graph P and are accounted by # (P).
Definition 6.2 (mIELL-reduction cost). The cost CmIELL(ρ) of a mIELL-reduction step ρ
on a proof-net N is defined as the size of the symmetric difference, written ⊖, between
the sets of vertices and links of N and those of ρ(N). The cost of a reduction sequence
ρ̄ is the sum of the costs of each step which is composed of.

CmIELL(ρ) = ∣V(N) ⊖ V(ρ(N))∣ + # (L(N) ⊖ L(ρ(N))) ; (6.4)
CmIELL(ρ̄) = ∑

ρ∈ρ̄CmIELL(ρ). (6.5)

Lemma 6.1 (mIELL-reduction cost). Given amIELL-reduction step ρ, its cost CmIELL(ρ) is in
Table 6.1.

Proof. By an immediate inspection of the reduction rules, we first see that the linear beta
step erases 3 vertices and 2 links of arity 3. In the case of the k + 1-ary duplication of
an exponential box B, there are k new copies of the box, giving a size augmentation of
k× # (B). On the other hand, it removes k+ 2 vertices, a ?-link of arity k+ 2 and an !-link
of arity 2. ∎

6.3. Input/output paths 113

Table 6.1 Cost of classic reduction rules, where in the case of (D), k + 1 is the number of
premisses of the ?-link, and B is the box enclosed by the !-link.

Rule CmIELL(ρ)(⊸) 9(D) k × # (B) + 2k + 4
The cost for SG and RB is a bit more parsimonious and is motivated by a dynamic in-
terpretation of the mux links. The traditional viewpoint analyses only the number of
hyperlinks, and therefore interprets a (dκ)-step (for some kind κ) between a k-ary mux
m and a hyperlink h as the duplication of h in k copies. In the case of syntax with fans,
i.e. binary muxes, such a perspective would allow to assign a unitary cost to every re-
duction step. We intend, instead, to have a closer and more accurate look. Supposing
m = ⟨v0, . . . , vk (∣*⟩) w⟩, we interpret any vertex vi as a duplicate of w, since morally all
copies are already available to the rest of the graph. Moreover, if w is the main vertex of a
duplication redex on a link h = ⟨z1 . . . zl (κ) w⟩, then the rewriting step acts on h (whose
size is l + 1) and its l premisses, not counting w. Therefore, our cost measure roughly
correspond to the variation — i.e. the absolute value of the difference — of the size of the
graph ignoring conclusions of mux-links. Remark that such measure is slightly smaller
than the length of the sequence of binary duplications.

Definition 6.3 (Cost of SG- and RB-reduction). The cost of a SG- or a RB-step σ, is given
in Table 6.2. Observe that, given a mux with k + 1 premiss, the cost of duplication and
interaction rule would be null if k = 0. This is the reason for which we exclude such a case
by forbidding the creation of unary muxes with the rule (!).
Table 6.2 Sharing and readback rules’ cost, where j+ 1, k+ 1 and l+ 1 respectively are the
number of premisses of the ?-link, the first and the second ∣*⟩-link, possibly involved.

Rule CSG(σ)(⊸) 9(!) 6(t) j + 4(d!) 3k(d⊸), (d⊸̄), (r⊸̄) 5k(d?), (r?) (2j + 3) × k(a), (m) k(s) k × l

6.3 Input/output paths

We now introduce a new notion of path characterised by the fact that it travels a link
only from an in-vertex to a out-link, or vice versa. We call them in/out paths, and show
that they are acyclic and enjoys some connectivity properties with respect to⊸-links and
boxes. Finally we also define how they are deformed by the reduction.

114 6. Efficiency of sharing implementation

6.3.1 Statics

Definition 6.4 (in/out paths). A path π ∶ u0 ∼ uk in a pre-net P is downward if for
any 0 ≤ i < k − 1 the vertex ui is an out-vertex of li, and ui+1 is an in-vertex of li and
ui /∈ BVar(P). If π† is downward, then π is an upward path from uk to u0. A path is in/out
when it is either downward or upward. We shall write u ≫ v when there is a downward
path from u to v, and v≪ u when u≫ v.

Lemma 6.2 (Partial order). For any UG-graph U :

1. ≫ is a partial order for V(U);
2. in/out paths contain no cycles.

Proof sketch. By a simple inspection of the definition of ≫, we verify that is enjoys reflex-
ivity and transitivity, so we pass to asymmetry and acyclicity. Given a in/out path π in
U , let π ′ be the in/out path in E(U) obtained from π by making it jump over every lift
crossed by π. Remark now that by construction π ′ is a special case of switching path (cf.
Definition 2.9), which considers only one of the two admitted switchings on⊸-links (the
one on the second premiss), and which imposes the in/out direction. Moreover, mIELL
proof-nets do not contain cyclic swtiching paths, hence π ′ does not contain cycles. But π
differ from the presence of lifts that cannot possibly introduce new cycles, thus also π is
acyclic. ∎
Lemma 6.3 (Crossing links). Let π be a downward path in a UG-graph U and l a link in
U . If l is not a⊸-link, then π contains at most 2 vertices of l; otherwise π contains at most 3
vertices, and in such a case one is the lowermost extremum of π.

Proof. We separately consider the two disjointed propositions of the claim.

1. Suppose that l is not a ⊸-link. Then let u, v be two distinct vertices of π, respect-
ively being an in-vertex and an in-vertex of the link l. Then (u, v) is by definition a
downward path over l. Now clearly u must precede v in π, since otherwise, as per
antisymmetry property of ≫ (Lemma 6.2), we would contradict our distinctness
hypothesis. Moreover, u, v have to be consecutive in π, because the existence of
π ′ /= (u, v) would imply that (i) there exist two links l, l ′ both insisting on u with
their in-vertex, and similarly that (ii) there exist two links l, l ′′ both insisting on v
with their out-vertex. Indeed, both these facts would be absurd, since at most one
in- and one out-vertex connection are allowed by definitions of unshared graphs. So
let π = π ′ ∶∶ (u, v) ∶∶ π ′′, and by acyclicity we conclude that there cannot be other be
other occurrences of u or v within π ′ or π ′′.

2. Suppose otherwise that l is a ⊸. In particular, let l = ⟨w,v (⊸) u⟩. Exactly as
in the previous case, we have that u, v must be appear consecutively in such order
within π, so let π = π ′ ∶∶ (u, v) ∶∶ π ′′. Moreover, u, v cannot occur elsewhere in π ′
nor π ′′. Now, by definition of downward path there exists now ′ such thatw≫ w ′,
therefore it must be the last and possibly unique vertex of π ′′. Hence the claim.

6.3. Input/output paths 115

∎
Lemma 6.4 (Connectivity). Given U a UG-graph, for any v ∈ V(U):

1. v≪ u where u is the root of U ,

2. v≫ u ′ for some u ′ ∈ FBVar(U).
Proof sketch. Immediate by Definition 2.3. ∎
Lemma 6.5 (Lambda-connectivity). Let ⟨u,w (⊸) z⟩ be a link in a UG-graph. Then v ∼ w
for any v such that v≫ u.

Proof sketch. Almost immediate from Lemma 6.4. ∎
Lemma 6.6 (Box connectivity). Let v be the root of a UG-graph U or the premiss of a !-link,
and let u be the premiss of a ?-link h. If `(u) > `(v) and v ≫ u, then for any w premiss of h
there exists π ∶ v≫ z≫ w, such that z is the premiss of the principal door of the box of w.

Proof sketch. Almost immediate from Lemma 6.4. ∎

6.3.2 Dynamics

Remind the notions of crossing and sufficient length for a path with respect to some redex
(cf. Definition 2.18).

Definition 6.5 (UG-residuals of downward maximal crossing). Let χ be a downward path
in a UG-graph U being a maximal crossing for a UG-redex R, and let ρ be its reduction.
The residuals of χ with respect to ρ are the set of downward path defined as follows.

1. If R is a (⊸)-step, let it be as in Figure 5.4a. Then:

ρ((v2,w,u2)) = {(u2 = v2)}; (6.6)
ρ((u1)) = {(u1 = v1)}; (6.7)

ρ((v2, v1)) = {(u2 = v2) ∶∶ γ ∶∶ (u1 = v1) ∣ γ ∶ u2 ≫ u1} . (6.8)

Notice that the rightmost side of (6.8) is the empty set whenever u2 /≫ u1. But it
cannot be the case, as per Lemma 6.5.

2. If R is a (!)-step, let it be as in Figure 5.4b Then:

ρ((v0,w,u)) = {(v0 = u)}. (6.9)

3. If R is a (d⊸)-step, let it be as in Figure 5.5a. Then:

ρ((v0,w,u2)) = {(v0, z20 , u2)}; (6.10)
ρ((u1)) = {(u1)}. (6.11)

Remark in the last equation that we cannot write (u1, z0), since it would not pre-
serve the extrema.

116 6. Efficiency of sharing implementation

4. If R is a (d⊸̄)-step, let it be as in Figure 5.5b. Then:

ρ((u2,w, v0)) = {(u2, z20 , v0)}; (6.12)
ρ((u2, u1)) = {(u2, z20 , u20 , u1)}. (6.13)

5. If R is a (d!)-step, let it be as in Figure 5.5c. Then:

ρ((v0,w,u)) = {(v0, z0, u)}. (6.14)

6. If R is a (d?)-step, let it be as in Figure 5.5d. Then for any 0 ≤ i ≤ h:
ρ((ui,w, v0)) = {(ui, z0i , v0)}. (6.15)

7. If R is a (a)-step, let it be as in Figure 5.6a. Then:

ρ((u0,w, v0)) = {(u0 = v0)}. (6.16)

8. If R is a (s)-step, let it be as in Figure 5.6b. Then:

ρ((u0,w, v0)) = {(u0, z00 , v0)}. (6.17)

9. Otherwise R is a (tD)-step. Let it be as in Figure 5.9. Then:

ρ((vi, z,w) ∶∶ γ ∶∶ (u ′j, uj)) = {(vi,wi) ∶∶ γi ∶∶ (u ′ji , uj)}, (6.18)

where:

• 0 ≤ i ≤ h, and 1 ≤ j ≤ k;
• u ′j ∈ Uj is a premiss of the ?-link having conclusion in uj;

• γ ∶ w≫ u ′j is a path in the subnet b;

• γi is the i-th copy of γ in the subnet bi.

Definition 6.6 (URB-residuals of downward maximal crossing). Let χ be a downward path
in a UG-graph U being a maximal crossing for a URB-redex R, and let ρ be its reduction.
The residuals of χ with respect to ρ are the set of downward path defined as follows.

1. If R is a (r⊸̄)-step, let it be as in Figure 5.7. Then:

ρ((v0, u2, u0)) = {(v0, z00 , u0)}; (6.19)
ρ((v0, u2, u1)) = {(v0, z10 , u1)}. (6.20)

2. If R is a (r?)-step, let it be as in Figure 5.8b. Then for any j ≠ i:
ρ((v0, ui,w)) = {(v0, y0,w)}; (6.21)
ρ((uj,w)) = {(uj, zj0 , z00 ,w)} . (6.22)

3. If R is a (m)-step, let it be as in Figure 5.8a. Then for any j ≠ i:
ρ((v0, ui,w)) = {(v0,w)}; (6.23)
ρ((uj,w)) = {(uj,w)} . (6.24)

6.4. Sharing contexts 117

Definition 6.7 (Residual of downward paths). Let π be a downward path in a UG-graph
U and let R be a UG- or a URB-redex such that π is long enough for R. If ρ is the reduction
step of R, then the reduction of π with respect to ρ is a function from π to a set ρ(π) of
downward paths in ρ(U). Let

π = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn ∶∶ πn, (6.25)

where for any 0 ≤ i ≤ n the sub-path χi is a maximal crossing of a redex R. Then:

ρ(π) = {π0 ∶∶ χ ′1 ∶∶ π1 ∶∶ . . . ∶∶ χ ′n ∶∶ πn ∣ χ ′i ∈ ρ(χi)} , (6.26)

where the residuals of a maximal crossing of R are defined in Definition 6.5 and 6.6. When
ρ(π) is a singleton, we shall often directly refer to the unique π ′ ∈ ρ(π) simply as ρ(π).

6.4 Sharing contexts

In order to study the dynamics lifts in unshared graphs, we introduce a labelling of (ver-
tices representing) occurrences of variables in (graphs representing) λ-terms. Over such
labels we construct a very simple algebraic monoidal structure. Its objects, called contexts,
are assigned to downward paths and models how lifts match each other. We will discover
two key facts. First, lifts of a given level are always well-nested, as if they are parentheses
(positive and negative lifts respectively correspond to open and close paarenthesis), where
one cannot close some that have not been previously opened, or a stack (positive and neg-
ative lifts respectively correspond to the push and pop operations), where one cannot pop
something that have been previously pushed. Second, whilst a vertex may have more than
one access paths connecting it to the root, or to the “root” of a box, i.e. its principal door,
all of these access paths have the same configuration of unmatched lifts (proceeding in the
metaphor: unclosed parentheses, or elements in the stack).

6.4.1 Variable occurrences and sharing contexts

Definition 6.8 (Variable occurrences). Given V a finite set of symbols of variable names,
V is the set of variable occurrences, that are triples in V × N × N, where the last two
components respectively select the index of a single occurrence and the maximal index of
all occurrences. Then, in a UG graph U , the labelling of variable occurrences VarO maps
premisses of ?- or ∣*⟩-links to V. We write xi∶k to denote (x, i, k) and Var for the first
projection of VarO, i.e. if VarO(v) = xi∶k, then Var(v) = x. In particular, VarO satisfies the
followings properties.

1. Injective on ?-links: if v ≠ w are two distinct premisses of ?-links in U , then
VarO(v) ≠ VarO(w).

2. Order-preserving and surjective on ?-links: if U contains ⟨v0, . . . , vk (?) w⟩, then
there exists x ∈ V such that, for any 0 ≤ i ≤ k, VarO(vi) = xi∶k ∈ V.

3. Coherent in the creation of ∣*⟩-links: if v is a premiss of the main ?-link in a (tD) re-
dex R, and µ(v) is the premiss of a ∣+⟩-link, residual of vwith respect to the reduction
µ of R, then VarO(v) = VarO(µ(v)).

118 6. Efficiency of sharing implementation

4. Coherent in the copy of ∣*⟩-links: if v is a premiss of a ∣*⟩-link l and µ(v) is the
premiss of a ∣+⟩-link residual of v with respect to a reduction µ, then VarO(v) =
VarO(µ(v)).

Definition 6.9 (Sharing context monoid). The sharing context monoid S∗ is generated
over V ∪ {0,1} by a binary operator ⋅, called concatenation, and a unary operator , said
negation. Concatenation forms a monoid, having 1 as identity and 0 as absorbing element.
If a, b, c ∈ S∗, then:

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c (6.27)
a ⋅ 1 = 1 ⋅ a = a (6.28)
a ⋅ 0 = 0 ⋅ a = 0 (6.29)

Negation is involutive and distributes over concatenation reversing its order. If a, b ∈ V,
then:

a = a (6.30)
a ⋅ b = b ⋅ a (6.31)

Moreover, concatenation of an object and its negation is either neutral or annihilating. If
a, b ∈ V with a ≠ 0 and a ≠ b, then:

a ⋅ a = 1 (6.32)
a ⋅ b = 0 (6.33)

When we need to distinguish S∗-equality from syntactic equality, we write =S∗ for the
former and = for the latter.

Definition 6.10 (Levelled sharing contexts). The levelled sharing contexts, or simply l-
contexts, are sharing contexts whose syntax is enriched by a lifting operator ! whose n-th
iterate is denoted by !n. An l-context γ naturally induces a map from N to S∗: for any
a ∈ S∗, we define a(n + 1) = 1 and a(0) = a, whilst !γ(n + 1) = γ(n) and !γ(0) = 1.
Moreover, l-contexts are uniformly null: if for some n ∈ N we have γ(n) = 0, then
γ(m) = 0 for anym ∈ N.
Also, we write (γ) ∣n to denote the restriction of γ on n. Namely, if m ≠ n then(γ) ∣n(m) = γ(m); otherwise, if γ(m) ≠ 0, then (γ) ∣n(m) = 1. Finally, we shall write
γ =n γ ′ to mean that γ(m) = γ(m) for any m ≥ n, whilst γ =n γ ′ dually means that
γ(m) = γ ′(m) for anym < n. Also, γ =n ′n γ ′ denotes the fact that γ(m) = γ ′(m) for any
n ≤m < n ′, so that γ =nn γ ′ means γ(n) = γ ′(n).
Definition 6.11 (Positivity and stable forms). An object c ∈ S∗ is positive, denoted by
c ⪰ 1, if c = 1 or c = a ⋅ b, where a ∈ V and b ⪰ 1. Dually, c is negative, written c ⪯ 1, if
c = 1 or c = a ⋅ b with a ∈ V and b ⪯ 1. Observe that the intersection between the sets of
positive and negative objects is 1 = 1, while the complement of their union is 0. A stable
form of c ∈ S∗ is any a ⋅ b = c such that a ⪯ 1 and b ⪰ 1.
Similarly, given an l-context γ ∈ N ↦ S∗, we say that γ is n-positive and write that γ ⪰n 1

if for any m ≥ n we have γ(m) ⪰ 1. In particular, when n = 0, we simply call γ positive,
written γ ⪰ 1.

Lemma 6.7 (Stability or nullity). Every c ∈ S∗ is either equal to 0 or to a unique stable
form.

6.4. Sharing contexts 119

Proof sketch. By orienting S∗-equations from left to right we obtain a rewriting system.
It is terminating — consider as a strictly decreasing measure the sum of: the number of
atomic objects, the number of negated concatenation, the number of negated negations.
Moreover it is locally confluent. ∎
Lemma 6.8 (Co-neutrality). If a, b ∈ S∗ such that a ⋅ b = a ≠ 0, then there exists c, d ∈ S∗
such that a = d ⋅ c and b = c ⋅ c, with c ⪰ 1.

Proof. We first observe that b ≠ 0. Indeed, if we suppose otherwise we would obtain that
a ⋅ b = 0. But a ⋅ b = a, therefore we would have a = 0 contradicting our hypothesis. So
a, b are not null, hence they have a stable form.

a = d ′ ⋅ d (stable form) (6.34)
b = c ′ ⋅ c (stable form) (6.35)

a ⋅ b = d ′ ⋅ d ⋅ c ′ ⋅ c (6.34), (6.35) (6.36)

Now, d ⋅ c ′ cannot be null, so they have a stable form.

d ′ ⋅ c = e ′ ⋅ e (stable form) (6.37)
a ⋅ b = d ′ ⋅ e ′ ⋅ e ⋅ c (6.37), (6.36) (6.38)

d ′ ⋅ e ′ ⋅ e ⋅ c = d ′ ⋅ d (hypothesis), (6.38) (6.39)
e ′ ⋅ e ⋅ c = d (6.39) (6.40)

Observe that by definition d > 0, while e ′ ⪯ 1. Therefore e ′ ⪰ 1, i.e.

e ′ = 1 (6.41)
e ⋅ c = d (6.41), (6.40) (6.42)
a = d ′ ⋅ e ⋅ c (6.34), (6.42) (6.43)

which is our first claim. Moreover,

d ′ ⋅ e ⋅ c = d ′ ⋅ e ⋅ c ⋅ c ′ ⋅ c (hypothesis), (6.35), (6.43) (6.44)
1 = c ⋅ c ′ (6.44) (6.45)
c ′ = c (6.45) (6.46)
b = c ⋅ c (6.35), (6.46) (6.47)

that is the second claim. ∎
Definition 6.12 (Levelled sharing context assignment). Given a downward path π ∶ u≫ v

between two vertices u, v in a UG-graph, the sharing l-context of π is defined as follows.

s (()) = 1 (6.48)

s (π ∶∶ (u, v)) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s (π) ⋅ !na if there is l = ⟨u (∣+⟩n) v⟩ s.t. VarO(l) = a
s (π) ⋅ !na if there is l = ⟨v (∣-⟩n) u⟩ s.t. VarO(l) = a
(s (π)) ∣n if there is ⟨u (?n) v⟩
s (π) if u, v belong to a link of kind in {⊸, ⊸̄, !}

(6.49)

120 6. Efficiency of sharing implementation

6.4.2 Positivity

This subsection is devoted to prove two fundamental properties of sharing l-contexts.
The first is that positive and negative lifts are placed along downward paths as matching
parentheses, which algebraically means that contexts are always positive (after some level)
if they start from the root of the graph (or a box within it). The second is that any
reduction different from the (d⊸)-rule does not affect contexts of downward paths.

Proposition 6.1 (Positivity). Let π be a downward path in a UG-graph U having maximum
in v, being the root of U or the premiss of a !-link. Then s (π) ⪰`(v) 1.
The proof requires four additional properties.

Lemma 6.9 (Long Invariance). If π is a downward path in a UG-graph U long enough for
the redex of a reduction step ρ, then s (π) = s (π ′) for any π ′ ∈ ρ(π).
Lemma 6.10 (Lambda-compatibility). Let π ∶ u ≫ w and π ′ ∶ w ≫ v be two downward
paths in a UG-graph U containing ⟨v,w (⊸) u ′⟩. If U is the root of U or the premiss of a
!-link, then s (π) =`(u) s (π ∶∶ π ′).
Lemma 6.11 (Box compatibility). Let π ∶ u≫ v and π ′ ∶ u≫ v ′ be two downward paths in
a UG-graph U such that: u is the root of U or a premiss of a !-link, and v, v ′ are premisses of
the same ?-link, which implies that `(v) = `(v ′). Then s (π) =`(v)

`(u) s (π ′).
Lemma 6.12 (Unary contraction). Let π ∶ u ≫ v be a downward path in a UG-graph U ,
where u is a !-premiss, v is a ?-premiss. If u, v belong to a box B, then s (v) (`(v)) = 1.
The four lemmas and the positivity proposition are so tightly related one with the other
that their proof will require a mutually recursive approach: to prove a statement we will
use another as inductive hypothesis.

Proof of Lemma 6.9 (Long Invariance). Let R be the redex of ρ. Since π is long enough for
R, let π = π0 ∶∶ χ1 ∶∶ π1 ∶∶ . . . ∶∶ χn ∶∶ πn, where χc is a maximal crossing of R, for any
1 ≤ c ≤ n. Recall from Lemma 6.3 that a link l could be crossed by a downward path at
most: twice, if l is not a⊸-link, three times, if it is. But a redex contains two connected
links, therefore, if R does not contain a⊸-link then n = 1, otherwise n ≤ 2. Now, if n = 0
then ρ(π) = {π}, and both claims trivially hold. So we assume otherwise that n ⪰ 1, and
proceed by a case analysis on the kind of rule employed by ρ ′.

1. Rule (⊸) and n ≤ 2. Let R be as in Figure 5.4a. Recall from Definition 6.5 that
χ can be of three kinds, among which (ui) is quite peculiar, since by Lemma 6.3,
it does not allow right concatenation, and is the only one that can succeed another
maximal crossing of the same redex R, namely (v2,w,u2). For these reasons, and
by our hypotheses on π, we can simplify our analysis to the following four cases.

(a) Suppose that π crosses (v2,w,u2). Then by (6.6), we have ρ(χ) = {(v2 = u2)},
and ρ(π) = {π0 ∶∶ (v2 = u2) ∶∶ π1}. So let π ′ = π0 ∶∶ π1 be the only element
of ρ(π). Now, by definition of l-context assignment, s (χ) = s (ρ(χ)) = 1.
Therefore, s (π) = s (π ′).

6.4. Sharing contexts 121

(b) Assume that π crosses (v2, v1). This is one of the most interesting cases of this
proof. By (6.8) and (6.26), we have

ρ(χ) = {(u2 = v2) ∶∶ γ ∶∶ (u1 = v1) ∣ γ ∶ u2 ≫ u1} (6.50)
= {γ ∣ γ ∶ u2 ≫ u1} , (6.51)

ρ(π) = ρ(π0 ∶∶ χ ∶∶ π1) (6.52)
= {π0 ∶∶ γ ∶∶ π1 ∣ γ ∶ u2 ≫ u1} . (6.53)

Now consider π ′ = π0 ∶∶ γ ∶∶ π1 ∈ ρ(π), for some γ ∶ u2 ≫ u1. By definition of
context,

s (π ′) = s (π0 ∶∶ γ ∶∶ π1) (6.54)
= s (π0) ⋅ s (γ) ⋅ s (π1) . (6.55)

Now we can safely apply Lemma 6.10 on γ and obtain invariance.

= s (π0) ⋅ s (π1) (6.56)
= s (π0) ⋅ 1 ⋅ s (π1) (6.57)
= s (π0) ⋅ s (χ) ⋅ s (π1) (6.58)
= s (π) (6.59)

(c) If π crosses (u1), we immediately observe that ρ(π) = {π}, which trivially
means that s (π) = s (π ′), for any π ′ ∈ ρ(π).

(d) If π crosses R first in (v2,w,u2) and then in (u1), exactly as we noticed in case
1a, we have a unique π ′ ∈ ρ(π), that is π0 ∶∶ π1. Thus, s (π) = s (π ′).

2. Rule (!) and n = 1. Let R be as in the leftmost part of Figure 5.4b, letm be the depth
of the !-link, and let also χ1 = (v0,w,u), that is the only possible maximal crossing
of R. By definition, its l-context is as follows:

s (π) = (s (π0)) ∣m ⋅ s (π1) . (6.60)

By definition of residual, as per (6.9):

ρ(π) = ρ(π0 ∶∶ (v0,w,u) ∶∶ π1) (6.61)
= {π0 ∶∶ (v0 = u) ∶∶ π1} (6.62)
= {π0 ∶∶ π1}. (6.63)

Let π ′ ∈ ρ(π). Its l-context is

s (π ′) = s (π0) ⋅ s (π1) . (6.64)

So, letm ′ ≥ `(v).
(a) If m ′ ≠ m, then (s (π0)) ∣m(m ′) = s (π0) (m ′), as by Definition 6.10 of re-

striction operator. Hence, s (π ′) (m ′) = s (π) (m ′). Since by inductive hypo-
thesis (IH) we have that s (π) (m ′) ⪰ 1, we also have s (π ′) (m ′) ⪰ 1.

122 6. Efficiency of sharing implementation

(b) Otherwise, m ′ = m. Observe that, by definition of proof-nets, v0 belong to a
box B, so let π0 = η ∶∶ β, where β is the maximal suffix of π0, whose vertices
are in B. Hence by definition:

s (π) (m) = s (η) (m) ⋅ (s (β)) ∣m(m) ⋅ s (π1) (m)
= s (η) (m) ⋅ 1 ⋅ s (π1) (m). (6.65)

Now, by construction, the maximum of β is an !-premiss of B, and v0 is
the only ?-premiss of B, therefore we can apply Lemma 6.12, to obtain that
s (β) (m) = 1.

s (π ′) (m) = s (η) (m) ⋅ s (β) (m) ⋅ s (π1) (m)
s (π ′) (m) = s (η) (m) ⋅ 1 ⋅ s (π1) (m). (6.66)

Therefore s (π) (m) = s (π) (m).
3. Rule (tD) and n = 1. Let R be as in Figure 5.9, and if l ′ is the ?-link in R, then

let m = `(l ′) and a = VarO(l ′). Observe that by definition, χ1 is in the form(vj, z,w) ∶∶ γ ∶∶ (Uj ′ , uj ′), where 0 ≤ j ≤ h with h > 0, 1 ≤ j ′ ≤ k, and γ is
a downward path in the box b. Remember that by definition of residual, and in
particular by (6.18),

ρ(π) = ρ (π0 ∶∶ (vj, z,w) ∶∶ γ ∶∶ (Uj ′ , uj ′) ∶∶ π1)
= {π0 ∶∶ (vj,wi) ∶∶ γj ∶∶ (Uj ′

j
, uj) ∶∶ π1} . (6.67)

Its l-context is by definition:

s (π) = s (π0 ∶∶ (vj, z,w) ∶∶ γ ∶∶ (Uj ′ , uj ′) ∶∶ π1)= (s (π0)) ∣m ⋅ (s (γ)) ∣m ⋅ s (π1) (6.68)

Let π ′ be the unique element of ρ(π), and observe it crosses the j-th lift introduced
by the reduction, say l ′′. By definition of reduction and that of variable occurrences,
`(l ′′) = `(l ′) =m and VarO(l ′′) = VarO(l ′) = a. Therefore,

s (π ′) = s (π0 ∶∶ (vj,wj) ∶∶ γj ∶∶ (Uj ′
j
, uj) ∶∶ π1)

= (s (π0) ⋅ !ma ⋅ s (γ)) ∣m ⋅ s (π1) . (6.69)

Letm ′ ≥ `(v) and consider its equality with respect tom.

(a) If m ′ ≠m, we easily conclude. Indeed, by definitions of restriction and lifting
we obtain the claim from (6.68) and (6.69).

s (π) (m ′) = (s (π0) ⋅ s (γ) ⋅ s (π1)) (m ′)
= s (π ′) (m ′). (6.70)

(b) Otherwise,m ′ =m. Consider again (6.68) and (6.69), and recall that, applying
Proposition 6.1 of positivity as IH, s (π0) ⪰`(v) 1 and s (γ) ⪰m 1. In particular,
these imply that respectively s (π0) (m) ⪰ 1 and s (γ) (m) ⪰ 1. Now, by
definition of restriction and lifting operators, we easily rewrite (6.68) into:

s (π) (m) = 1 ⋅ 1 ⋅ (s (π1)) (m) (6.71)
= s (π1) (m). (6.72)

6.4. Sharing contexts 123

Now, in (6.69) we can exploit again positivity as IH to obtain a ⋅s (γ) (m) ⪰ 1.
Therefore we conclude.

s (π ′) (m) = 1 ⋅ (s (π1)) (m) (6.73)
= s (π) (m). (6.74)

4. Rule (d!) and n = 1. Assume R is as in the left of Figure 5.5c, where χ1 = (v0,w,u).
Also, if l is the ∣+⟩-link in R, let n be its level, and let a = VarO(l) for some a ∈ S∗.
By definition of l-context assignment,

s (π) = s (π0 ∶∶ (v0,w,u) ∶∶ π1) (6.75)
= s (π0) ⋅ !na ⋅ 1 ⋅ s (π1) (6.76)

By definition of residual, and in particular by (6.14):

ρ(π) = ρ(π0 ∶∶ (v0,w,u) ∶∶ π1) (6.77)
= {π0 ∶∶ (v0, z0, u) ∶∶ π0} (6.78)

So let π ′ be the unique path in ρ(π) and consider its l-context assignment.

s (π ′) = s (π0 ∶∶ (v0, z0, u) ∶∶ π1) (6.79)
= s (π0) ⋅ 1 ⋅ !na ⋅ s (π1) (6.80)
= s (π) (6.81)

5. Rule (d?) and n = 1. Let R be as in the right of Figure 5.5d, and let χ1 = (ui,w, v0),
for some 0 ≤ i ≤ h. Also, if l is the ∣+⟩-link in R, let n be its level, and let a = VarO(l)
for some a ∈ S∗. Finally, let m > n be the level of the ?-link. By definition of
l-context assignment,

s (π) = s (π0 ∶∶ (ui,w, v0) ∶∶ π1) (6.82)
= (s (π0)) ∣m ⋅ !na ⋅ s (π1) (6.83)

By definition of residual, and in particular by (6.15):

ρ(π) = ρ(π0 ∶∶ (ui,w, v0) ∶∶ π1) (6.84)
= {π0 ∶∶ (ui, z0i , v0) ∶∶ π0} (6.85)

So let π ′ be the unique path in ρ(π) and consider its l-context assignment, and
observe it is equivalent by definition of the restriction operator.

s (π ′) = s (π0 ∶∶ (ui, z0i , v0) ∶∶ π1) (6.86)
= (s (π0) ⋅ !na) ∣m ⋅ s (π1) (6.87)
= s (π) (6.88)

6. Rule (d ⊸) and 1 ≤ n ≤ 2. Let R be as in Figure 5.5a, and if h is the lift within R,
then let a = VarO(h) and letm be its level.

124 6. Efficiency of sharing implementation

(a) Suppose that π contains only the maximal crossing (v0,w,u2). By definition
of l-context assignment we have that

s (π) = s (π0 ∶∶ (v0,w,u2) ∶∶ π1)) (6.89)
= s (π0 ∶∶ (v0,w) ∶∶ (w,u2) ∶∶ π1) (6.90)
= s (π0) ⋅ !ma ⋅ 1 ⋅ s (π1) . (6.91)

Now, by definition of downward path residual, in particular (6.10),

ρ(π) = ρ(π0 ∶∶ (v0,w,u2) ∶∶ π1) (6.92)
= {π0 ∶∶ (v0, z20 , u2) ∶∶ π1}, (6.93)

So if we consider the l-context of π ′ ∈ ρ(π), we easily obtain that is equal to
that of π.

s (π ′) = s (π0 ∶∶ (v0, z20 , u2) ∶∶ π1) (6.94)
= s (π0) ⋅ s ((v0, z20) ⋅ s ((z20 , u2)) ⋅ s (π1) (6.95)
= s (π0) ⋅ 1 ⋅ !ma ⋅ s (π1) (6.96)
= s (π) . (6.97)

(b) Assume that π crosses R only in (u1). By definition of l-context assignment,
and of residual we have:

s (π) = s (π0 ∶∶ (u1)) = s (π0) , (6.98)
ρ(π) = ρ(π0 ∶∶ (u1)) = {π0 ∶∶ (u1)}. (6.99)

So, we immediately conclude: let π ′ ∈ ρ(π) and consider its context.

s (π ′) = s (π0 ∶∶ (u1)) = s (π) . (6.100)

(c) Otherwise π crosses R twice, and it must be the case that χ1 = (v0,w,u2),
while χ2 = (u1). From previous cases 6a and 6b we have: s (χ1) = s (χ ′1) for
any χ ′1 ∈ ρ(χ1), and s (χ2) = s (χ ′2) for any χ ′2 ∈ ρ(χ2). Hence the claim.

7. Rule (d⊸̄) and n = 1. Let R be as in the rightmost part of Figure 5.5b, and if h is
the lift within R, then let a = VarO(h) and m = `(h). We distinguish two cases,
according to the two possible maximal crossing of R.

(a) If χ1 = (u2,w, v0), then by definition of residual, and in particular by (6.12),

ρ(π) = ρ(π0 ∶∶ (u2,w, v0) ∶∶ π1) (6.101)
= {π0 ∶∶ (u2, z20 , v1) ∶∶ π1} (6.102)

Let π ′ ∈ ρ(π). By simply inspecting the definition, we immediately verify that
the l-context is unvaried.

s (π) = s (π0) ⋅ 1 ⋅ !ma ⋅ s (π1) (6.103)
= s (π0) ⋅ !ma ⋅ s (π1) (6.104)
= s (π0) ⋅ !ma ⋅ 1 ⋅ s (π1) (6.105)
= s (π ′) (6.106)

6.4. Sharing contexts 125

(b) Otherwise χ1 = (u2, u1). Its residual is by (6.13),

ρ(π) = ρ(π0 ∶∶ (u2, u1) ∶∶ π1) (6.107)
= {π0 ∶∶ (u2, z20 , u20 , u1) ∶∶ π1}. (6.108)

While the l-context of π and that of π ′ ∈ ρ(π) are:

s (π) = s (π0) ⋅ 1 ⋅ s (π1) (6.109)
s (π ′) = s (π0) ⋅ !ma ⋅ !na ⋅ s (π1) . (6.110)

Now, letm ′ ≥ l and consider its equality with respect tom.

i. Ifm ′ ≠m, then s (π) (m) = s (π ′) (m).
ii. Otherwise, m ′ = m. By IH we have that s (π0 ∶∶ (u2, u1)) ⪰`(v) 1, which

means that in particular s (π0) (m) ⋅ a ⪰ 1. Therefore, it must be the case
that s (π0) (m) = b ⋅ a, for some b ∈ S∗. Substituting it in (6.109) and
(6.110), we obtain

s (π) (m) = b ⋅ a ⋅ s (π1) (m) (6.111)
s (π ′) (m) = b ⋅ a ⋅ a ⋅ a ⋅ s (π1) (m) (6.112)

= b ⋅ a ⋅ s (π1) (m). (6.113)

8. Rule (r?) and n = 1. Let R be as in Figure 5.8b, where h is the ∣+⟩-link and h ′ is the
?-link involved R. Let m = `(h), a = VarO(h). We have two kinds of downward
crossings, which we analyse separately.

(a) Assume first χ1 = (v0, ui,w). By definition of residual and in particular by
(6.21),

ρ(π) = ρ(π0 ∶∶ (v0, ui,w) ∶∶ π1) (6.114)
= {π0 ∶∶ (v0, y0,w) ∶∶ π1}. (6.115)

Let π ′ be the unique path in ρ(π) and inspect the definition of l-context as-
signment. We immediately verify it is unvaried.

s (π) = s (π0) ⋅ !ma ⋅ 1 ⋅ s (π1) (6.116)
= s (π0) ⋅ 1 ⋅ !ma ⋅ s (π1) (6.117)
= s (π ′) (6.118)

(b) Otherwise, hypothesise that χ1 = (uj,w) where i ≠ j. By definition and in
particular by (6.22):

ρ(π) = ρ(π0 ∶∶ (uj,w) ∶∶ π1) (6.119)
= {π0 ∶∶ (uj, zj0 , z00 ,w) ∶∶ π1}. (6.120)

Now, letm ′ ≥ `(v) and consider its equality with respect tom.

i. If m ′ ≠ m, then by definition of the lifting operator we immediately ob-
tain that the l-context is invariant and that IH is consequently preserved.

s (π) (m ′) = (s (π0) ⋅ s (π1)) (m ′) (6.121)
= s (π ′) (m ′) (6.122)

126 6. Efficiency of sharing implementation

ii. Otherwise, we have that:

s (π) (m) = (s (π0) ⋅ s (π1))(m), (6.123)
s (π ′) (m) = (s (π0) ⋅ !ma ⋅ !ma ⋅ s (π1))(m). (6.124)

Let π ′0 be a downward path whose first vertex is the same as that of π0,
and whose last vertex is the premiss ui of h. Its existence is guaranteed
by Lemma 6.6. As observed in previous case 8a, let s (π ′0) (m) = α ⋅ a,
for some α ∈ S∗. By Lemma 6.11, we know that s (π0) =`(h ′)

`(v) s (π ′0),
therefore we obtain the claim:

s (π ′) (m) = α ⋅ a ⋅ a ⋅ a ⋅ s (π1) (6.125)
= α ⋅ a ⋅ s (π1) (m) (6.126)
= s (π) (m). (6.127)

9. Rule (r⊸̄). Omitted: an inspection of definitions shows that for each of the two
possible downward crossing of R the situation is identical to what is described in
case 4 (rule (d!)).

10. Rule (s) and n = 1. Let R be as in the right of Figure 5.6b, and χ1 = (u0,w, v0).
Also, if l (resp. l ′) is the ∣+⟩-link (resp. ∣-⟩) in R, let n (resp. m) be its level, and let
a = VarO(l) for some a ∈ S∗ (resp. b). By definition of l-context assignment,

s (π) = s (π0 ∶∶ (u0,w, v0) ∶∶ π1) (6.128)
= s (π0) ⋅ !na ⋅ !mb ⋅ s (π1) (6.129)

By definition of residual, and in particular by (6.17):

ρ(π) = ρ(π0 ∶∶ (u0,w, v0) ∶∶ π1) (6.130)
= {π0 ∶∶ (u0, z00 , v0) ∶∶ π0} (6.131)

So let π ′ be the unique path in ρ(π). If we consider its l-context assignment, we
easily conclude by definition of lifting:

s (π ′) = s (π0 ∶∶ (u0, z00 , v0) ∶∶ π1) (6.132)
= s (π0) ⋅ !mb ⋅ !na ⋅ s (π1) (6.133)
= s (π) . (6.134)

11. Rule (a) and n = 1. Let R be as in left of Figure 5.6a. If h,h ′ are the lifts within
R, then let: m = `(h) = `(h ′), a = VarO(h), and a ′ = VarO(h ′). By definition of
l-context assignment,

s (π) = s (π0 ∶∶ (u0,w, v0) ∶∶ π1) (6.135)
= s (π0) ⋅!ma⋅!ma ′ ⋅ s (π1) . (6.136)

But as per Proposition 6.1 we know that s (π) ⪰`(v) 1. Therefore, it must be the
case that s (π0) ⪰`(v) 1 and a ⋅ a ′ = 1, which means that a = a ′. Hence,

= s (π0) ∶∶ s (π1) . (6.137)

6.4. Sharing contexts 127

Now, by definition of residual (cf. (6.16)), we have that

ρ(π) = ρ(π0 ∶∶ (u0,w, v0) ∶∶ π1) (6.138)
= {π0 ∶∶ (u0 = v0) ∶∶ π1}. (6.139)

Let π ′ ∈ ρ(π) and observe that l-context of π ′ is equivalent to that of π.

s (π ′) = s (π0) ∶∶ s (π1) . (6.140)

12. Rule (m) and n = 1. Assume R as in the right of Figure 5.8a, and let χ1 = (v0, ui,w),
for some 0 ≤ i ≤ h. Also, let n be the level of the ?-link and of the ∣+⟩-link in R, say l.
Finally, let a = VarO(l) for some a ∈ S∗. By definition of l-context assignment, and
by definition of the restriction operator:

s (π) = s (π0 ∶∶ (v0, ui,w) ∶∶ π1) (6.141)
= (s (π0) ⋅ !na) ∣n ⋅ s (π1) (6.142)
= (s (π0)) ∣n ⋅ s (π1) . (6.143)

By definition of residual, and in particular by (6.23):

ρ(π) = ρ(π0 ∶∶ (v0, ui,w) ∶∶ π1) (6.144)
= {π0 ∶∶ (v0,w) ∶∶ π0}. (6.145)

Consider π ′ is the unique path in ρ(π), and look at its l-context assignment. We
conclude.

s (π ′) = s (π0 ∶∶ (v0,w) ∶∶ π1) (6.146)
= (s (π0) ⋅ !na) ∣m ⋅ s (π1) (6.147)
= s (π) (6.148)

∎
Proof of Proposition 6.1 (Positivity). Let U be a UG-graph, and π ∶ a ≫ b be a path such
that a is a !-premiss or the root of U . If U is a proof-net, then the claim holds trivially,
since s (π) = 1 ⪰ 1. So suppose otherwise that U = ρ(U ′), for some UG-graph U ′ and
some UG- or URB-reduction step ρ. Also, let R be the redex of ρ, and let ρ(R) be the
residuals of R.

1. If a, b do not belong to int(R), then there exists π ′ ∶ a ≫ b path of U that is long
enough for R and such that π = ρ(π ′). Now a is a !-premiss or the root of U ′, so
per IH s (π ′) ⪰`(a) 1. But by invariance Lemma 6.9 we have s (π ′) = s (π), hence
s (π) ⪰`(a) 1.

2. If a or b belong to int(R), we distinguish some cases depending on the rule of R.
When needed to avoid confusion between paths, we shall precise as a subscript the
graph to which they belong, e.g. πU or π ′U ′ .

a. Rules (!), (⊸), (a), (m). Absurd: by inspection of the definition we verify
that int(R) = ∅.

128 6. Efficiency of sharing implementation

b. Rule (d!). Let R be as in Figure 5.5c, and observe that int(R) = {z0}.
i. If a = z0, then π = (z0, u)U ∶∶ η for some downward path η. We notice

immediately that s ((z0, u)U ′) ⪰ 1, by definition of contexts, as well as
s (η) ⪰`(a) 1, by inductive hypothesis. Hence s (π) ⪰`(a) 1.

ii. If b = z0, then π = η ∶∶ (v0, z0)U for some downward path η. But
s (η) ⪰`(z0) 1, while s ((v0, z0)) = 1 ⪰ 1. Therefore, s (π) ⪰`(a) 1.

c. Rule (d?). Let R be as in Figure 5.5d, and observe that int(R) = {z00 , . . . , z0k},
so let us consider z0i for some 0 ≤ i ≤ k.

i. If a = z0i , then we absurdly contradict the hypothesis of a being a !-
premiss or the root of U .

ii. If b = z0i , then π = η ∶∶ (ui, z0i)U for some downward path η. Inspecting
ρ we observe that s ((ui, z0i)U) = s ((ui,w, v0)U ′). Also, by IH we have
that s (η ∶∶ (ui,w, v0)) ⪰`(a) 1, hence s (π) ⪰`(a) 1.

d. Rules (d ⊸). Let R be as in Figure 5.5a, and notice that int(R) = {z10 , z20}.
Also, since ρ(R) does not include a !-link, a ∉ int(R).
Now, if b = z20 , then the situation is exactly as in the previously discussed
case 2.b.ii. So assume b = z10 , and let χ1 = (v0, x20 , u2), and χ2 = (u1, z10).
Clearly, χ2 is a suffix of π. What about χ1?

i. If χ1 ⊄ π, then observe that `(a) > `(z10). Let π = π0 ∶∶ χ2, Now, by
definition s ((u1, z10)) =`(a) 1, and π0U ′ ⪰`(a) 1 per inductive hypo-
thesis. Hence the claim.

ii. If χ1 ⊂ π, then let π = π0 ∶∶ χ1 ∶∶ π1 ∶∶ χ2, and consider π ′ = π0U ′ ∶∶
χ ′1 ∶∶ π1U ′ , where χ ′1 = (v0,w,u2). Also, let n be the level of the ∣*⟩-links
crossed in χ1, χ2, and consider the l-context of π at levelm ∈ N.

A. If m ≠ n, as in last sub-case we immediately obtain that s (π) (m) =
s (π ′) (m). But by IH s (π ′) (m) ⪰ 1, thus s (π) (m) ⪰ 1.

B. Otherwise m = n. In U ′ we know by IH that s (π0 ∶∶ χ ′1) =`(a)
s (π0 ∶∶ χ ′1 ∶∶ π1), hence s (π0 ∶∶ χ ′1) (n) = s (π0 ∶∶ χ ′1 ∶∶ π1) (n). Be-
cause of this, we can apply Lemma 6.8, to obtain that, for anym ′ ∈ N
(hence in particular for m ′ = m), there exist c, d ∈ S∗ such that
s (π0 ∶∶ χ ′1) (m ′) = c ⋅ d and s (π1) (m ′) = d ⋅ d, where d is posit-
ive.
Let e = s (χ ′1) (m), and observe that s (χ1) = s (χ ′1). Also, notice that
e has to be the rightmost object of the stable form of s (π0 ∶∶ χ ′1) (m ′).
I. If d = 1, then s (π0 ∶∶ χ ′1) (m ′) = c ′ ⋅ e, and s (π1) (m ′) = 1. So we

can write the l-context of π at n as follows.

s (π) (n) = s (π0 ∶∶ χ1 ∶∶ π1 ∶∶ χ2) (6.149)
= s (π0 ∶∶ χ1) (n) ⋅ s (π1) (n) ⋅ s (χ2) (n) (6.150)
= c ′ ⋅ e ⋅ 1 ⋅ e (6.151)
= c ′ (6.152)
= s (π0) . (6.153)

II. If d ≠ 1, then s (π0 ∶∶ χ ′1) (m ′) = c ⋅ d ′ ⋅ e. and s (π1) (m ′) = e ⋅ d ′ ⋅

6.4. Sharing contexts 129

d ′ ⋅ e. Therefore, the l-context at level n of π is:

s (π) (n) = s (π0 ∶∶ χ1 ∶∶ π1 ∶∶ χ2) (6.154)
= s (π0 ∶∶ χ1) (n) ⋅ s (π1) (n) ⋅ s (χ2) (n) (6.155)
= c ⋅ d ′ ⋅ e ⋅ d ′ ⋅ e ⋅ d ′ ⋅ e ⋅ e (6.156)
= c ⋅ d ′ ⋅ e ⋅ e ⋅ d ′ ⋅ d ′ ⋅ e ⋅ e (6.157)
= c ′ ⋅ d ′ ⋅ e (6.158)
= s (π0) . (6.159)

But by IH s (π0) (n) ⪰ 1, thus s (π) (n) ⪰ 1.
Therefore the claim.

e. Rules (d⊸̄), (r?), (r⊸̄), (s). Since ρ(R) does not contain an !-link, a ∉ int(R),
so it must be the case that b ∈ int(R). Then we can follow both arguments
used in cases 2.b.ii and 2.c.ii.

f. Rule (tD). Let R be as in Figure 5.9, and observe that in this case we have
int(R) = ⋃0≤i≤h V(bi), where we recall that V(b) is the set of vertices of the
i-th copy of the box b.

i. If a, b ∈ ⋃0≤i≤h V(bi), then observe that any vertex of π has a unique
anti-residual in U ′. So let π ′ ∶ a ′ ≫ b ′ be the path built by these anti-
residuals following the same order of π. Unsurprisingly, s (π) = s (π ′).
But s (π ′) ⪰`(a ′) 1 by IH, and `(a ′) = `(a), therefore s (π) ⪰`(a) 1.

ii. If a ∈ ⋃0≤i≤h V(bi) ∌ b, then let π = γ ∶∶ (Uji , uj) ∶∶ η, for some 0 ≤ i ≤ h
and 1 ≤ j ≤ k. Now, consider π ′ = γ ∶∶ (Uji , uj) ∶∶ η. Similarly to the
previous case 2.f.i, we have s (π ′) = s (π), and s (π ′) ⪰`(a) 1, hence the
claim.

iii. If a ∉ ⋃0≤i≤h V(bi) ∋ b, then let πU = π0 ∶∶ (vj,wj) ∶∶ γj for some
1 ≤ j ≤ k, and consider π ′U ′ = π0 ∶∶ (vj, z,w) ∶∶ γ. Now, firstly ob-
serve that s (π0U) = s (π0U ′), which is positive by IH. Secondly, we have
s ((vj, z,w)) ⪰ 1 by definition. Finally, we notice that s (γj) = s (γ),
which is positive by IH. (More details are comprehensively explained in
case 3 of the proof of Lemma 6.9.) Therefore π has a positive weight.

∎
Proof of Lemma 6.10 (⊸-compatibility). Let U be a UG-graph, π ∶ a≫ c and φ ∶ c ≫ d be
two paths such that a is a !-premiss or the root of U , and there exists ⟨d, c (⊸) b⟩. If U is a
proof-net, then the claim immediately holds, since s (π) = s (φ) = 1 = s (π ∶∶ φ). Suppose
otherwise that U = ρ(U ′), for some UG-graph U ′ and some UG- or URB-reduction step
ρ. Also, let R be the redex of ρ, and let ρ(R) be the residual of R.

1. If a, c, and d do not belong to int(R), then there exist π ′ ∶ a ≫ c and φ ′ ∶ c ≫ d

paths of U that are long enough for R. Now, a is a !-premiss the root of U ′, so
per IH s (π ′) =`(a) s (π ′ ∶∶ φ ′). But by invariance Lemma 6.9, s (π ′) = s (π) and
s (φ ′) = s (φ). Hence s (π) ⪰`(a) 1.

130 6. Efficiency of sharing implementation

2. If a, c, or d belongs to int(R), we distinguish some cases depending on the rule of
R. Subscripts of paths denotes the graph to which they belong, e.g. πU , π ′U ′ .

a. Rules (!), (⊸), (a), (m). Absurd: by inspection of the definition we verify
that int(R) = ∅.

b. Rules (d?), (d⊸̄), (r⊸̄), (r?), (s). Then ρ(R) does not contain any link of
kind ! or⊸, so a, c, and d cannot be in int(R). Absurd.

c. Rule (d!). Let R be as in Figure 5.5c, and observe that int(R) = {z0}. Since we
assumed c, d being respectively the second and the first premiss of a⊸-link, it
must be the case that c, d ≠ z0, which implies that a = z0. So, let π = (z0, u) ∶∶ η
for some downward path η. By IH, we know that s (η) =`(a) s (η ∶∶ φ). Hence
s (π) =`(a) s (π ∶∶ φ).

d. Rule (d⊸). Let R be as in Figure 5.5a. We preliminarily notice that int(R) ={z10 , z20}. Also, since ρ(R) does not include a !-link, a ∉ int(R). Moreover, it
must the case that both c, d ∈ int(R). because ρ(R) contains both the premisses
of a⊸-link. In particular, this mean that c = z20 , d = z10 . Then the claim has
been proven in the proof of Proposition 6.1, case 2.d.ii (in particular Equa-
tion 6.153 and 6.159).

e. Rule (tD). Let R be as in Figure 5.9, where int(R) = ⋃0≤i≤h V(Bi). By hypo-
thesis on c, d we have that c belongs to int(R) if and only if d does so.

i. If a, c, d ∈ ⋃0≤i≤h V(bi), then observe that any vertex of π has a unique
anti-residual in U ′. So let π ′ ∶ a ′ ≫ c ′ and φ ′ ∶ c ′ ≫ d ′ be the path
built by these anti-residuals following the same order of π and φ, re-
spectively. Then s (π) = s (π ′) and s (φ) = s (φ ′). By IH we have
s (π ′) =a s (π ′ ∶∶ φ ′), therefore s (π) =a s (π ∶∶ φ).

ii. If a ∈ ⋃0≤i≤h V(bi) ∌ c, d, then let π = γ ∶∶ (Uji , uj) ∶∶ η for some 0 ≤ i ≤ h
and 1 ≤ j ≤ k. Now, consider π ′ = γ ∶∶ (Uji , uj) ∶∶ η, and observe that
s (π ′) = s (π). Now, by IH we know s (π ′) =a s (π ′ ∶∶ φ), so we conclude
that s (π) =a s (π ∶∶ φ), quod erat demonstrandum.

iii. If a ∉ ⋃0≤i≤h V(bi) ∋ c, d, then let π = π0 ∶∶ (vj,wj)U ∶∶ γj, for some
1 ≤ j ≤ k. Now, consider π ′ = π0 ∶∶ (vj, z,w)U ′ ∶∶ γ. Let m be the level of
the !-link in R. Now, firstly observe that s (π0U) = s (π0U ′) and s (γj) =
s (γ). Moreover, by definition of l-context assignment, s (π0) (m) = 1.
Therefore s (π ′) (m) = s (γ) (m). But s (π ′) (m) = s (π ′ ∶∶ φ) (m), thus
s (γ) (m) = s (γ ∶∶ φ) (m). Secondly, we have s ((vj,wj)) ⪰ 1 per defin-
ition. Thirdly, applying positivity Proposition 6.1 as IH, we obtain that
s (γ) ⪰`(a) 1, hence s (γj) ⪰`(a) 1. Hence the claim. (See also case 3 of
the proof of Lemma 6.9.)

∎
Proof sketch of Lemma 6.11 (Box-compatibility). To avoid pedantry, we provide only an out-
line of the argumentation, since it is very similar to that of Lemma 6.10. One goes by
induction on the length of the reduction sequence from a proof-net, where the statement
holds trivially, to the given UG-graph. Given a step ρ, Lemma 6.9 allows to obtain the
claim by IH in the case of paths whose counter-image with respect to ρ is long enough

6.4. Sharing contexts 131

for the redex of ρ. Otherwise, one proceeds with an inspection of possible redexes whose
residuals are crossed by the paths π ∶ u≫ v and π ′ ∶ u≫ v ′ of interest.

• One interesting case is that of the (tD). Its behaviour is irrelevant at levels strictly
smaller than `(u) and greater or than `(v), which are out of the statements’ scope.
In between such interval, the rule adds a lift in front of one of the copies of a box
B, which carry a S∗ object to the paths crossing it. It is sufficient to observe that
for any box B ′ at level strictly smaller than `(v), v ∈ B ′ if and only if v ′ ∈ B ′ (such
property comes from a crucial feature of mIELL: a ?-premiss belongs at most to one
box); and to recall the box connectivity Lemma 6.6. This allow to observe that any
new lift generated by a (tD)- step on B necessarily introduces a S∗ object which
belongs to both the contexts of π,π ′

• The only other notable case is (r?). Assume it happens on v and involve a lift having
variable occurrence c at level n, which therefore is the only one to be considered.
By IH, both the n-th contexts of the anti-residuals of v, v ′ have suffix c. Therefore
while c is not the suffix of the n-th l-context of v, the other premiss v ′ has c ⋅ c ′, so
they are equivalent.

∎
Proof sketch of Lemma 6.12 (Unary contraction). Let π ∶ u ≫ v be a downward path in a
UG-graph U , where U is a !-premiss, v is a ?-premiss, and both belong to a box B. If U is
a proof-net, then the claim holds trivially, since s (π) = 1 ⪰ 1. So suppose otherwise that
U = ρ(U ′), for some UG-graph U ′ and some UG- or URB-reduction step ρ. Let R be the
redex of ρ, and ρ(R) its residual.

1. If u and v do not belong to int(R), then there exists π ′ ∶ u ≫ v path of U that is
long enough for R and such that π = ρ(π ′). Now, a is a !-premiss or the root of U ′,
so per IH s (π) = 1. But by invariance Lemma 6.9 we have s (π ′) = s (π), and in
particular s (π ′) (`(u)) = s (π) (`(u)) hence s (π ′) (`(u)) = 1.

2. Otherwise u or v belongs to int(R).
(a) Rules (!), (⊸), (d ⊸), (d⊸̄), (a), (s), (r⊸̄). Absurd: by inspection of the

definition we verify that int(R) = ∅.

(b) Rules (d!). Let π = χ ∶∶ η, and π ′ = χ ′ ∶∶ η such that π ′ is long enough for R and
ρ(π ′) = π.
Now, by definition of UG-graph, the level of the involved lift has to be strictly
smaller than n. Therefore s (χ ′) (`(u)) = s (χ) (`(u)). But by IH s (η) (`(u)),
hence we conclude.

(c) Rules (d?), (r?). These cases are duals of 2b, and omitted.

(d) Rule (m). Let π = η ∶∶ χ, and π ′ = η ∶∶ χ ′ such that π ′ is long enough for
R and ρ(π ′) = π. Consider the ∣+⟩-link l in R, and observe that by definition,
s (χ ′) (`(u)) = VarO(l) ≠ 1. Hence s (π ′) (`(u)) =≠ 1. But this is the negation
of IH. Absurd.

132 6. Efficiency of sharing implementation

(e) Rule (tD). Let R be as in Figure 5.9, and say the box of R is named C, and
the copies of C are named C0 . . . Ch, for some h > 0. In this case int(R) =⋃0≤i≤h V(Ci). We distinguish three cases depending on the level n of the box
C.

i. If n > `(u), then in U we have that Ci ⊂ B for any 0 ≤ i ≤ h. This implies
that there exists a downward path π ′ in U ′ such that ρ(π ′) = π. But this
contradicts our assumption that u or v belong to int(R). Absurd.

ii. If n = `(u), then there exists 0 ≤ i ≤ h such that Ch = B. Look again at
Figure 5.9 and observe that v = Uji for some 1 ≤ j ≤ k, that is the residual
of the ?-premissUj in U ′. ButUj has a total of h+1 residual vertices in U ,
all being premiss of the same ?-link l. But this contradicts our hypothesis
that v is the only premiss of l. Thus there is nothing to be proven here.

iii. If n < `(u), then there exists 0 ≤ i ≤ h such that Ci ⊃ B. Notice that π
is one of the h + 1 copies of some path π ′ of U ′, i.e. π ∈ ρ(π), for some
downward path π of U ′. Thus, s (π) = s (π ′), from which the claim.

∎

6.4.3 Path irrelevance

We show that the contexts of rooted paths to a given vertex does not depend on the choice
of the path, so we can generalise the definition of sharing levelled context as a notion
about vertices.

Lemma 6.13 (Path irrelevance). Let π ∶ u ≫ v and π ′ ∶ u ≫ v be two downward paths in a
UG-graph U where u is the root of U or a premiss of a !-link. Then s (π1) =`(u) s (π2).
Proof. Let U be a UG-graph, and let φ,φ ′ ∶ w≫ v be two paths in U . We go by induction
on the number e of vertices belonging to both paths.

1. If e = 1, then φ = φ ′ and the claim is trivially verified.

2. Otherwise e > 1, so let φ = γ ∶∶ π and φ ′ = γ ′ ∶∶ π ′ such that: γ,γ ′ ∶ w ≫ u

and π,π ′ ∶ u ≫ v, where u ≠ v. Since by definition s (φ) = s (γ) ⋅ s (π) and
s (φ ′) = s (γ ′) ⋅ s (π ′), where per IH we have s (γ) = s (γ ′), we have just reduced
the claim to prove s (π) = s (π ′).
By construction, v has to be the out vertex of a link having at least two in vertices.
There are only two links of such kind: ⊸ and ?. But the first premiss of a ⊸-link
cannot be reached from its second premiss with an upward path. Therefore v is the
conclusion of a ?-link l.
Let z, z ′ respectively be the two premisses of l such that π = δ ∶∶ (z, v) and π ′ =
δ ′ ∶∶ (z ′, v). By Lemma 6.11, s (δ) =`(w)

`(u) s (δ ′). And by definition of l-context
assignment, s (π) = (s (δ)) ∣`(w) and s (π ′) = (s (δ ′)) ∣`(w). Hence the claim.

∎

6.5. Unshared cost of reductions 133

Definition 6.13 (Sharing levelled context of a vertex). The sharing levelled context of a
vertex v ∈ V(U), for some UG-graph U whose root is r, is s (π) for any downward path
π ∶ r≫ v.

Recall from Definition 2.3 that the interior of a pre-net P is the set of vertices of P that
are not its conclusions. Now we observe that the l-context of a given vertex is preserved
under reduction if it does not belong to the interior of the involved redex. If otherwise it
is not the case, then the l-context may change. Most notably, this happens for any vertex v
belonging to a box B that is duplicated under a (tD)-step, where any rooted path reaching
a copy of v crosses a different, and newly introduced, lift.

Lemma 6.14. Given a UG-graph U and a reduction step ρ on a redex R, if v ∉ int(R), then
s (v) = s (v ′), for any residual v ′ of v.
Proof. By hypothesis any downward path π from the root r of U to v is long enough for
R. By definition, there exists π ′ ∈ ρ(π) such that π ′ ∶ r≫ v ′. Moreover, by long invariance
Lemma 6.9, we have s (π) = s (π ′) = s (v ′). ∎

6.5 Unshared cost of reductions

Thanks to sharing contexts, we can identify a set of sub-graphs in a UG graph whose
links and vertices are morally waiting for a lift propagation: its share. As anticipated in
Section 6.1, we introduce some additional precisions and tools that allow us to transfer
CmIELL and CSG in unshared reductions. More precisely, we define two distinct complexity
measures for →UG, that are ĈmIELL

UG and CSG
UG. We show that for any simulation they are

indeed equivalent to their counterparts.

6.5.1 Share

Every time that in a UG-graph U we perform a (tD)-step on a k+1-ary contraction against
a box B, we distinguish 1 old copy of B, say B0 and call it the master copy of B, and k new
copies, say B1, . . .Bk, that are shared by the mux introduced in the simulating (t). So,
if we call ‘master’ the 0th lifts and ‘sharing’ all the others, we are able to discriminate all
the vertices of U whose sharing l-context is neutral or master, from those whose sharing
l-context is shared. These former are the share of U , which is partitioned in connected
components.

Definition 6.14 (Share and master). A variable occurrence xi∶m is called master if i = 0.
Given a lift ⟨u (∣*⟩) v⟩, if VarO(u) is master then it is a master lift, and it will be drawn
in solid black, otherwise it is a sharing lift. A context a is master, written a ≈ 1 if a = 1,
or a = x0∶m, or a = b and b ≈ 1, or a = b ⋅ c and b, c ≈ 1. Otherwise, we write a /≈ 1 and
say that a is shared. Similarly, a l-context α is master if α(n) /≈ 1 for any n ∈ N, otherwise
it is shared. A vertex is shared if its l-context is so, otherwise is master; a link is shared if
it has at least one shared vertex, otherwise is master.
The share of a UG-graph U is the subgraph Sh (U) = (V ′, L ′), where V ′ ⊂ V(U) contains

134 6. Efficiency of sharing implementation

any shared vertex, and L ′ ⊂ L(U) contains any shared link. A share component is a non-
empty, maximal, and connected subset of the share, i.e. C ⊆ Sh (U) such that for any
u ∈ C if v ∈ Sh (U) is linked to u then v ∈ C. The set of share components of U is denoted
as ShC (U).
Sometimes (tD)-steps acts on subgraphs that overlap with the share, so we further dis-
tinguish lifts that get duplicated: intuitively, if a lift l is in the scope of a sharing lift l ′,
then l is ‘interior’ and the latter is a ‘boundary’. Also, we want a way to measure the size
of the share ignoring all vertices whose presence is due to lifts, and not to mIELL links.
For a sequence of lifts containing a boundary lift, we say all of its vertices are ‘bound-
ary’, while vertices of other sequences without boundary lifts are ‘pseudo-boundary’. All
other shared vertices are then those of our primary interest, since they morally resist to
lift-erasing. But we may have a strange kind of share components that are made of lifts
only, so that none of its vertices are interior; we shall call them ‘boundary’ as well.

Definition 6.15 (Share boundary and interior). Let l = ⟨u (∣*⟩) v⟩ in a UG-graph U . l is
a boundary lift if l is sharing and u ∉ Sh (U) , v ∈ Sh (U), while l is a an interior lift when
u, v ∈ Sh (U). The set of lifts of the former kind is denoted as bdL� (U), that of the latter
as intL� (U).
A vertex v ∈ Sh (U) is a boundary vertex if there is a boundary lift ⟨u (∣*⟩) v⟩, or there is
a lift ⟨w (∣*⟩) v⟩ or ⟨v (∣*⟩) w⟩ such that w is a boundary vertex. A boundary vertex is
boundary-limit if it is linked to a shared link. The set of boundary vertices is denoted as
bdSh (U), its subset of limit boundary vertices as bdLimSh (U). Given v ∈ bdLimSh (U),
the boundary lift chain of v is the longest sequence of lifts L that induces a path v ∼ u, where
u is the conclusion of a boundary lift.
If Sh (U) ∋ v ∉ bdSh (U) and v is a in-vertex of a lift, then v is a pseudo-boundary vertex,
the set of which is denoted as pbSh (U). If Sh (U) ∋ v ∉ bdSh (U) ∪ pbSh (U), then v is
an interior vertex, the set of which is intSh (U). A share component having no interior
vertices is a boundary component, and bdShC (U) denotes the set of such components.

Fact 6.1. In any UG-graph, the l-context at level n of the first premiss (i.e. the one indexed as
0) of a ?n-link is master.

In any UG-graph the number of boundary limit vertices cannot be greater than the size of
the interior share.

Fact 6.2. In any UG-graph U , # (bdLimSh (U)) ≤ # (intSh (U)).
Fact 6.3. Any UGRB-normalisation of a boundary share component include at least one (a)-
step.

6.5.2 Unshared cost of mIELL reduction

We are now able to introduce the notion of cost on UG-reduction which we expect to be
equivalent to the CmIELL for simulating reductions. The main intuition is that, roughly
speaking, in any UG graph U , the size of the internal share corresponds to the number of
lift propagations that can be performed, or that must be performed to reach the normal
form. Therefore we can make use of the variations in the size of the internal share to

6.5. Unshared cost of reductions 135

distribute the non-constantly bounded cost of a (D)-step over a single (tD) step that
grows the share, and a number of (dκ)- or (rκ)-steps, for some kind κ, that shrink the
share.

Definition 6.16 (mIELL-cost and bdShC-cost of unshared reduction). Given a UG-reduction
µ ∶ U →U ′, the partial mIELL-cost of µ, denoted as CmIELL

UG (µ), is defined as the difference
between: the CmIELL-cost of ρ such that ρ ← [µ, and the variation in the size of interior
share caused by µ:

CmIELL
UG (µ) = CmIELL(ρ) −∆intSh (µ) ; (6.160)

∆intSh (µ) = # (intSh (U ′)) − # (intSh (U)) . (6.161)

The full mIELL-cost of µ is the sum of its partial cost and the size of internal share of its
residual:

ĈmIELL
UG (µ) = CmIELL

UG (µ) + # (intSh (U)) . (6.162)

Lemma 6.15 (Correctness of ĈmIELL
UG). Let µ̄ be a UG-reduction N →∗ U ′ and let ρ̄ be its

mIELL-simulation N →∗ N ′. Then CmIELL(ρ̄) = ĈmIELL
UG (µ̄).

Proof. Immediate by Definition 6.16. ∎
To allow the comparison of CmIELL

UG with respect to CSG
UG, i.e. the other cost measure of

UG reduction that we shall introduce in Subsection 6.5.3, we first carry out a systematic2

inspection of the former cost measure. In particular, it is worth noticing that, for any
given kind of redex, the sum of the variations in the size of the interior share and in
the number of boundary share component is constant. Also, we see that the accounting
of logical rules (⊸) and (§) is essentially left unchanged with respect to CmIELL, with
a notable exception. If it involves interior shared vertices, then such vertices has to be
accounted twice, because morally the reduction need to pay not only for the elimination
cost, but also for the unpaid instantiation cost.

Definition 6.17 (Boundary share component cost). The boundary-share-components cost
of µ is the absolute value of the variation in the number of boundary share components
caused by µ.

CbdShC
UG (µ) = ∣∆bdShC (µ) ∣; (6.163)

∆bdShC (µ) = # (bdShC (U ′)) − # (bdShC (U)) . (6.164)

2Tedious.

136 6. Efficiency of sharing implementation

Ta
bl
e
6
.3

M
et

ri
cs

of
U

G
an

d
U

R
B

re
du

ct
io

n
(c

f.
Le

m
m

a
6
.16

):
va

ri
at

io
n

in
th

e
siz

e
of

in
te

ri
or

sh
ar

e,
m

IE
LL

-c
os

t,
an

d
va

ri
at

io
n

in
th

e
nu

m
be

ro
fb

ou
nd

ar
y

sh
ar

e
co

m
po

ne
nt

s.
N

ot
at

io
ns

:
µ

is
th

e
re

du
ct

io
n

st
ep

,U
is

th
e

ne
t
co

nt
ai
ni

ng
th

e
re

de
x,
d
κ
,r
κ

is
a

ge
ne

ri
c

du
pl

ic
at

io
n

ru
le
,h

+1
is

th
e

nu
m

be
r
of

pr
em

iss
es

of
th

e
?-l

in
k,

Bi
st

he
bo

x
su

bn
et

,l
,l
′ ar

e
th

e
lif

ts
.

R
ul

e
Pr

ov
iso

∆
in

tS
h
(µ)

C
m

IE
LL

U
G

(µ)
C

bd
Sh

C
U

G
(µ)

(⊸)
m

as
te

r
0

9
0

sh
ar

ed
−9+

∆
bd

Sh
C
(µ)

1
8
−∆b

dS
hC

(µ)
[0,2

]
(!)

m
as

te
r

0
6

0

sh
ar

ed
−6

1
2

[0,1
]

(tD
)

m
as

te
r

h
×#(

E(B
))−

h
3
h
+4

{0,h
}

sh
ar

ed
h
×#(

E(B
))−

3
h
−6

5
h
+10

0

(d!)
l
∈bd

L�
(U)

−3+
∆

bd
Sh

C
(µ)

3
−∆b

dS
hC

(µ)
[0,1

]
(d⊸

)
l
∈bd

L�
(U)

−5+
∆

bd
Sh

C
(µ)

5
−∆b

dS
hC

(µ)
[0,2

]
(d?)

,(r?
)

l
∈bd

L�
(U)

−2h
−3+

∆
bd

Sh
C
(µ)

2
h
+3−

∆
bd

Sh
C
(µ)

[0,h
+1]

(d⊸̄
),(r

⊸̄)
l
∈bd

L�
(U)

−5+
∆

bd
Sh

C
(µ)

5
−∆b

dS
hC

(µ)
[0,2

]
(dκ)

,(rκ
)

l
∉bd

L�
(U)

0
0

0

(a)
l,
l′ ∈

bd
L�

(U)
0

0
−1

ot
he

rw
ise

0
0

0

(s)
l,
l′ ∉

bd
L�

(U)
an

d
−1+

∆
bd

Sh
C
(µ)

1
−∆b

dS
hC

(µ)
[0,1

]
l,
l′ ∈

bd
L�

(µ(U
))

ot
he

rw
ise

0
0

0

(m)
l
∈bd

L�
(U)

0
0

−1
ot

he
rw

ise
0

0
0

6.5. Unshared cost of reductions 137

Lemma 6.16 (Metrics on UG-reduction). Given a UG or a URB reduction step, the possible
values of the variation in the size of interior share, of the mIELL-cost, and of the variation in
the number of boundary share components and lifts are in Table 6.3.

Proof. Given a UG-graph U , let R be a redex in U , and let µ be the reduction step on R.
We proceed with a case analysis depending on the kind of redex.

1. Rule (⊸). Let R be as in Figure 5.1.

(a) If w ∉ Sh (U), then v1, v2,w,u1, u2 ∉ Sh (U) and v1, v2 ∉ Sh (µ(U)). No
boundary share components are changed by µ. Hence, trivially:

∆intSh (µ) = 0; (6.165)
CmIELL

UG (µ) = 9 − 0 = 9; (6.166)
∆bdShC (µ) = 0. (6.167)

(6.168)

(b) If w ∈ Sh (U), we separately consider three portions of the redex.

• Consider w and the two links, which all belong to intSh (U), so they
contributes with ∆intSh (µ) = −1 − 2 × 3 = −7.

• Consider u1, v1, whose residual is u1 = v1. Observe that v1 ∉ pbSh (U).
We now distinguish six sub-cases.
i. If u1, v1 ∈ intSh (U), then u1 ∈ intSh (µ(U)). Therefore∆intSh (µ) =−1 and ∆bdShC (µ) = 0.
ii. If u1 ∈ pbSh (U) and v1 ∈ intSh (U), then u1 ∈ pbSh (µ(U)). There-

fore ∆intSh (µ) = −1 and ∆bdShC (µ) = 0.
iii. If u1 ∈ intSh (U) and v1 ∈ bdSh (U), then u1 ∈ bdSh (µ(U)).

Hence, ∆intSh (µ) = −1 and ∆bdShC (µ) = 0.
iv. If u1 ∈ pbSh (U) and v1 ∈ bdSh (U), then by definition of pseudo-

boundary, there exists a path πi ∶ xi ≫ ui such that xi ∈ intSh (U)
while x ′i ∈ pbSh (U) for every x ′i ≠ xi in πi. In the residual we have
not only u1 ∈ bdSh (µ(U)), but also xi, x ′i ∈ bdSh (µ(U)). Hence
∆intSh (µ) = −1 and ∆bdShC (µ) = 0.

v. If u1 ∈ bdSh (U) and v1 ∈ bdSh (U), then u1 ∈ bdSh (µ(U)). There-
fore ∆intSh (U) = 0. Moreover v1 = u1 form a new boundary share
component, so ∆bdShC (µ) = 1.

vi. If u1 ∈ bdSh (U) and v1 ∈ intSh (U), then u1 ∈ bdSh (U). Thus,
∆intSh (U) = −1. and ∆bdShC (µ) = 0.

• Consider u2, v2, whose residual is u2 = v2. The analysis is identical to the
previous case, where u2 plays the role of v1 and v2 that of u1.

Summing up, we obtain what follows.

∆intSh (µ) = −9 +∆bdShC (µ) ; (6.169)
CmIELL

UG (µ) = 9 − (− 9 +∆bdShC (µ))
= 18 −∆bdShC (µ) ; (6.170)

∆bdShC (µ) ∈ [0, 2]. (6.171)

138 6. Efficiency of sharing implementation

2. Rule (!). Let R be as in Figure 5.4b.

(a) Assume that w ∉ Sh (U). We immediately notice that u ∉ Sh (U), but we can
easily observe also that v0 ∉ Sh (U). Suppose otherwise that v0 is shared and
letm ∈ N such that s (v0) (m) /≈ 1.

i. Ifm ≠ `(u) then, by definition of context assignment, we would have also
s (w) (m) /≈ 1, contradicting our hypothesis.

ii. Otherwise, m = `(u), and let s (v0) = xi∶m ′ with m ′ ≥ i > 0. Now, this
would absurdly imply that the ?-link of R has at least i+1 premisses, while
it has only 1 (i.e. v0).

Therefore v0 ∉ Sh (U), which implies:

∆intSh (µ) = 0; (6.172)
CmIELL

UG (µ) = 6 − 0 = 6; (6.173)
∆bdShC (µ) = 0. (6.174)

(b) Otherwise, w ∈ Sh (U) and the analysis follows almost identical to previous
sub-case 1b.

∆intSh (µ) = −6; (6.175)
CmIELL

UG (µ) = 6 − (−6) = 12; (6.176)
∆bdShC (µ) ∈ [0, 1]. (6.177)

3. Rule (tD). Let R be as in Figure 5.9.

(a) Suppose first that z ∉ Sh (U).
The vertices v0, . . . , vh, V1 . . . , Vk, u1, . . . , uk are irrelevant with respect to the
interior share, since none of them cannot belong to Sh (µ(U)). The same goes
for z, since w ∉ µ(U).
B0 is irrelevant as well. Indeed, the newly introduced master lift cannot affect
∆intSh (µ) nor ∆bdShC (µ). Moreover, by Fact 6.1 and by our hypothesis on
z, we also have v0 ∉ Sh (U).
Now let 1 ≤ i ≤ h, and let yi be a vertex in Bi ⊂ µ(U) residual of y in B ⊂ U .
We observe that yi ∈ intSh (µ(U)) if y ≠ w and y ∈ E(U). Therefore:

∆intSh (µ) = h × (# (E(B)) − 1) ; (6.178)
CmIELL

UG (µ) = h × # (E(B)) + 2h + 4 − (h × # (E(B)) − h)
= 3h + 4. (6.179)

Now let us consider share boundaries. Clearly we have h new lifts of this
kind. What about the variation of the number of share components? Notice
for any c ∈ bdShC (B) and any ci copy of c, we have ci is not a boundary share
component, but a set of pseudo-boundary share vertices. So the only way for
µ to create a new boundary share component involve the new lifts, which are
boundary because we assumed w ∉ Sh (U). Since by Proposition 6.1 in B
there cannot be ⟨s (∣-⟩n) t⟩ such that w ≫ t, the only other way to have a
boundary share component is that V(B) = {w}. So if this is case we have
∆bdShC (µ) = h, otherwise ∆bdShC (µ) = 0:

∆bdShC (µ) = {0, h}. (6.180)

6.5. Unshared cost of reductions 139

(b) Otherwise z ∈ Sh (U). We separately discuss subsets of vertices of the redex.

• Consider z and the two main links. By this last hypothesis z ∈ intSh (U),
while z ∉ µ(U), so in this portion of the redex we have ∆intSh (µ) =−1 − (h + 2) − 2 = −h − 5.

• Consider V(B)∖w, and let x ∈ V(B)∖w and xi ∈ V(Bi)∖wi for some 0 ≤
i ≤ h. If i = 0 then nothing changes with respect to the share positioning:
x belongs to Sh (B), intSh (B), pbSh (B), or bdSh (B) if and only if
x0 respectively belongs to Sh (B0), intSh (B0), pbSh (B0), or bdSh (B0).
The same goes for boundary lifts: l ∈ bdL� (B) if and only if l ′ ∈ B0,
where l ′ is the residual of l. If instead i > 0, we first observe that if
x ∈ bdSh (U), then xi ∈ pbSh (µ(U)), and that any lifts in L(Bi) are
interior. Hence, in both cases, in this portion of the redex we have that
∆intSh (µ) = h × (# (E(B)) − 1), while ∆bdShC (µ) = 0.

• Consider w and vi with 0 ≤ i ≤ h. Since z ∈ Sh (U), it must be the
case that w,vi ∈ Sh (U). Also, notice that, by definition of pseudo-
boundaries, w ∉ pbSh (U), and by Proposition 6.1,w ∉ bdSh (U). Hence
w ∈ intSh (U).
i. If vi ∈ bdSh (U), then both wi, vi ∈ bdSh (µ(U)), and boundary

share components unaffected.
ii. If vi ∈ intSh (U), then vi ∈ intSh (µ(U)) and wi ∈ pbSh (µ(U)),

while no change affects boundary share components.
iii. If vi ∈ pbSh (U), then vi,wi ∈ pbSh (µ(U)), while no change affects

boundary share components.

Hence, here we observe ∆intSh (µ) = −(h + 1) and ∆bdShC (µ) = 0.
We conclude summing up the variations for the three portions of R so far
considered:

∆intSh (µ) = −h − 5 + h × (# (E(B)) − 1) − (h + 1)
= h × # (E(B)) − 3h − 6; (6.181)

CmIELL
UG (µ) = h × # (E(B)) + 2h + 4 +

− (h × # (E(B)) − 3h − 6)
= 5h + 10; (6.182)

∆bdShC (µ) = 0. (6.183)

4. Rule (d!). Let R be as in Figure 5.5c, and let l, µ(l) respectively be the lift of R and
its residual. Recall that by definition u cannot belong to pbSh (U).
(a) If l ∈ bdL� (U), then by definition also µ(l) ∈ bdL� (µ). Moreover, we have

v0 ∉ Sh (U) and w ∈ bdSh (U). We separate two sub-cases about u.

i. If u ∈ intSh (U), then in the reduct we notice thatw ∉ Sh (µ(U)) and u ∈
bdSh (µ(U)). Therefore ∆intSh (µ) = −1 − 2 = −3, and ∆bdShC (µ) = 0.

ii. If u ∈ bdSh (U), then w ∉ Sh (µ(U)) and u ∈ bdSh (µ(U)). Observe
that u belongs to a new boundary share component of µ(U). Therefore
∆intSh (µ) = 0 − 2 = −2, and ∆bdShC (µ) = 1.

140 6. Efficiency of sharing implementation

Summarising:

∆intSh (µ) = −3 +∆bdShC (µ) ; (6.184)
CmIELL

UG (µ) = 0 − (−3 +∆bdShC (µ)) = 3 −∆bdShC (µ) ; (6.185)
∆bdShC (µ) ∈ [0, 1]. (6.186)

(b) If l ∉ bdL� (U), then also µ(l) ∉ bdL� (µ(U)). Moreover, w ∉ intSh (U).
There are then only three sub-cases we need to consider about w.

i. If w ∉ Sh (U), which means that l is master, then v0, u ∉ Sh (U). Hence
trivially, v0, u ∉ Sh (µ(U)).

ii. If w ∈ pbSh (U), then by definition of pseudo-boundary, there exists a
path πi ∶ xi ≫ w (where it may be the case that xi = v0) such that
xi ∈ intSh (U) while x ′i ∈ pbSh (U) for every x ′i ≠ xi in πi. In the
residual we have xi, x ′i unchanged with respect to the share. Moreover,
w ∈ intSh (µ(U)), while u ∈ bdSh (µ(U)).

iii. If w ∈ bdSh (U), then w ∈ bdSh (µ(U)). We need to distinguish two
sub-cases about u, which by definition cannot belong to pbSh (U).
A. If u ∈ intSh (U), then in the residual we observe thatw ∈ intSh (µ(U)),

while u ∈ pbSh (µ(U)).
B. If u ∈ bdSh (U), then trivially u ∈ bdSh (µ(U)).

In all the three sub-cases, we accounted no variation in the metrics.

∆intSh (µ) = 0; (6.187)
CmIELL

UG (µ) = 0; (6.188)
∆bdShC (µ) = 0. (6.189)

5. Rules (d ⊸), (d ⊸), (d?), (r⊸̄), (r?). The analysis of ∆intSh (µ), CmIELL
UG (µ) and

∆bdShC (µ) is very similar to that of case 4, thus omitted to avoid pedantry.

6. Rule (a). Let R be as in Figure 5.6a, and let l, l ′ be the two lifts.

(a) If l, l ′ ∈ bdL� (U), then by definition, we have u0, v0 ∉ Sh (U), while w ∈
bdSh (U). After the reduction, the only residual vertex is u0 ∉ Sh (µ(U)).
Hence,

∆intSh (µ) = 0; (6.190)
CmIELL

UG (µ) = 0; (6.191)
∆bdShC (µ) = −1. (6.192)

(b) Otherwise l, l ′ ∉ bdL� (U), and we consider three sub-cases depending on v0,
which by definition cannot belong to intSh (U).

i. If v0 ∉ Sh (U), then also u0 ∉ Sh (U), which means that l, l ′ are master
lifts. Trivially, we have u0 ∉ Sh (µ(U)).

ii. If v0 ∈ bdSh (U), then it must be the case that u0 ∈ bdSh (U) as well.
Therefore u0 ∈ bdSh (µ(U)). Also, there exists c ∈ bdShC (U) such that
u0,w, v0 ∈ c if and only if there exists c ′ ∈ bdShC (U) such that u0 ∈ c.

6.5. Unshared cost of reductions 141

iii. If v0 ∈ pbSh (U), then by definition of pseudo-boundary, there exists
a path πi ∶ xi ≫ w (where it may be the case that xi = u0) such that
xi ∈ intSh (U) while x ′i ∈ pbSh (U) for every x ′i ≠ xi in πi. In the
residual we have xi, x ′i unchanged with respect to the share positioning.

Therefore,

∆intSh (µ) = 0; (6.193)
CmIELL

UG (µ) = 0; (6.194)
∆bdShC (µ) = 0. (6.195)

7. Rule (s). Let R be as in Figure 5.6b, and let l, l ′ be the two lifts.

(a) If l, l ′ ∉ bdL� (U) but l, l ′ ∈ bdL� (µ(U)), then w necessarily belongs to
Sh (U), but not to intSh (U). Before considering two sub-cases about w,
we can already remark that, by hypotesis, one new positive boundary lift is
introduced by µ.

i. If w ∈ pbSh (U), then there exists πi ∶ xi ≫ u0 (where possibly xi = u0)
such that xi ∈ intSh (U) while x ′i ∈ pbSh (U) for every x ′i ≠ xi in πi. In
the reduct we have xi, x ′i ∈ bdSh (µ(U)), while z00 ∉ Sh (µ(U)).

ii. Otherwise w ∈ bdSh (U), which implies that both u0, v0 ∈ bdSh (U). In
the reduct we still have u0, v0 ∈ bdSh (µ(U)), while z00 ∉ Sh (µ(U)).
Moreover, while u0, v0 ∈ c ∈ bdShC (U), after the reduction u0 ∈ c and
v0 ∈ d where c, d ∈ bdShC (µ(U)) and c ≠ d.

Hence:

∆intSh (µ) = −1 +∆bdShC (µ) ; (6.196)
CmIELL

UG (µ) = 1 −∆bdShC (µ) ; (6.197)
∆bdShC (µ) ∈ [0, 1]. (6.198)

(b) Otherwise, observe that if l, l ′ cannot both belong to bdL� (U), since that
would mean that `(l) = `(l ′), which would imply that R is an (s)-redex, con-
tradicting our hypothesis. Moreover, by definition we cannot have one interior
and one boundary lift. Therefore we have only three possible cases.

i. If w ∉ Sh (U), which means that l, l ′ are both master lifts, then we trivi-
ally have u0,w, v0 ∉ Sh (U) and u0, z00 , v0 ∉ Sh (µ(U)).

ii. If w ∈ pbSh (U), which means that l, l ′ are both interior lifts, then we
have v0 ∈ pbSh (U). Moreover, there exists πi ∶ xi ≫ u0 (where possibly
xi = u0) such that xi ∈ intSh (U) while x ′i ∈ pbSh (U) for every x ′i ≠ xi in
πi. In the reduct we have x ′i, z00 ∈ pbSh (µ(U)), and xi ∈ intSh (µ(U)),
while no change can affect boundary share components.

iii. If w ∈ Sh (U), which means that one lift, say the positive l, is boundary,
and the other, say the negative l ′, is master. The dual case is omitted
for the sake of conciceness. By such assumption and by definition, we
then have u0 ∉ Sh (U), while w,v0 ∈ bdSh (U). After the reduction, we
obtain u0, z00 ∉ Sh (U), while v0 ∈ bdSh (U). Moreover, the number of
boundary share components is unchanged.

142 6. Efficiency of sharing implementation

We conclude by summarising:

∆intSh (µ) = 0; (6.199)
CmIELL

UG (µ) = 0; (6.200)
∆bdShC (µ) = 0. (6.201)

8. Rule (m). Let R be as in Figure 5.8a, and l its lift.

(a) If l ∈ bdL� (U), then ui ∈ bdSh (U), while v0,w ∉ Sh (U). After µ, we
obtain no change with respect to the share positioning. On the other hand,{ui} ∈ bdShC (U), which is erased by µ. Therefore,

∆intSh (µ) = 0; (6.202)
CmIELL

UG (µ) = 0; (6.203)
∆bdShC (µ) = −1. (6.204)

(b) Otherwise, we distinguish two sub-cases about u0, which by our assumption
cannot belong to intSh (U), nor to bdSh (U).

i. If ui ∉ Sh (U), then trivially also v0,w ∉ Sh (U). In the reduction ui is
erased, and we have no change about internal share or its boundaries.

ii. If ui ∈ pbSh (U), then w ∉ Sh (U). Also, there exists πi ∶ xi ≫ v0

(where it may be the case that xi = v0) such that xi ∈ intSh (U) while
x ′i ∈ pbSh (U) for every x ′i ≠ xi in πi. Now, in the residual we have that
xi, x

′
i are unchanged with respect to the share positioning. Hence, again

there is no change about internal share or its boundaries.

∆intSh (µ) = 0; (6.205)
CmIELL

UG (µ) = 0; (6.206)
∆bdShC (µ) = 0. (6.207)

∎

6.5.3 Unshared cost of SG reduction

We now define CSG
UG, a second notion of cost on unshared graphs reduction that, symmet-

rically with respect to what we did with CmIELL
UG , allows to transfer the CSG-cost of any

sharing reduction simulated by UG graphs. Looking at a simulation of such kind, the
first inspiring idea is that, in a UG-graph U , all reductions inside Sh (U) have no cost.
Indeed, shared vertices, shared links and shared redexes are copies of master copies, and
only these are represented in the SG-graph that unfold in U . Hence, we shall put costs
only to redexes outside the share. The second ingredient is the role played by lifts, which
mimic muxes’ dynamics while preserving coherence in the complexity account. For every
muxm in G, we distribute the cost of a propagation against another kind of link, or of an
interaction with another mux, over the set of boundary lifts in the unfolding ofm. These
considerations lead us to the following definition.

6.5. Unshared cost of reductions 143

Definition 6.18 (Cost on unshared graph). Given a UG or RB reduction step µ, the SG-
cost of µ, written CSG

UG(µi), is defined in Table 6.4. The SG-cost of a reduction sequence is
the sum of the costs of its steps.

Table 6.4 Shared cost of an unshared reduction step µi ∶ U →U ′. When present, l, l ′ are
lifts, and k + 1 is the number of premisses of the ?-link.

Rule Provisos CSG
UG(µ)(⊸) µ ∉ Sh (U) 9(!) µ ∉ Sh (U) 6(tD) µ ∉ Sh (U) j + 4(⊸), (!), (tD) µ ∈ Sh (U) 0(d!) l ∈ bdL� (U) 3(d⊸), (d⊸̄), (r⊸̄) l ∈ bdL� (U) 5(d?), (r?) l ∈ bdL� (U) 2k + 3(dκ), (rκ) l ∉ bdL� (U) 0

(a), (m) l, l ′ ∈ bdL� (U) 1

otherwise 0

(s) bdL� (U) ∋ l, l ′ ∈ bdL� (µ(U)) 1

otherwise 0

Is such a definition correct? To verify that, we deep into the unfolding relation and the
simulation, looking at their effects on sharing contexts in the unshared graph. We find a
strong invariance. Consider a set V of vertices in a UG graph such that they all belong
to the unfolding of a same vertex in a SG graph. If in the l-context of v ∈ V appears
xi∶k, then we know that for any 0 ≤ j ≤ k there exists a unique v ′ ∈ V whose l-context
differs from that of v only for xi∶k, where instead appears xj∶k. This essentially means that
the set V is in a bijection with all the possible variations to indices that one can perform
on their sharing l-context (Proposition 6.2). Thanks to this crucial proposition, we then
easily subsume the fact that every vertex in a SG graph has a unique master vertex in its
unfolding (Lemma 6.17), and similarly that, for every k + 1-ary mux in a SG graph, there
are exactly k boundary lifts in its unfolding (Lemma 6.18). These two facts pave the way
to prove that the unshared cost of a UG-reduction sequence is always equal to the cost of
the SG-sequence it simulates (Lemma 6.19).

Proposition 6.2 (Unfolding and context permutations). Let σ ↪ µ be a pair of simulating
reductions such that N σ−−→∗

SG G, and N µ−−→∗
UG U , where G ↪ U . Let u ↩ v for some

u ∈ V(U), v ∈ V(G) such that a ⋅ b ⋅ c = s (u) (n) stable, for some a, b, c ∈ S∗. If b = xi∶k (or
xi∶k), then for any 0 ≤ i ′ ≤ k there is a unique u ′ ↩ v such that:

1. s (u ′) (n) = a ⋅ b ′ ⋅ c, with b ′ = xi ′∶k (or xi ′∶k, respectively); and
2. s (u ′) (n ′) = s (u) (n ′), for any n ′ ≠ n.

Proof. We proceed by induction on the length of the SG-reduction σ̄ such that G = σ̄(N)
for some proof-net N . The base case is trivial, because when ∣σ̄∣ = 0 we have G = N
and since G ↪ U also U = N . Therefore, for any s ∈ V(G) we have s (s) = 1 and the
claim vacuously holds. So assume otherwise and in particular: let G = σ(G ′) for some

144 6. Efficiency of sharing implementation

SG-reduction step σ on a redex S such that G ′ = σ̄ ′(N); let U ′ ↩ G ′; and let µ̄ ↩ σ for
some UG-reduction sequence µ̄ on a set of redexes M̄ such that U = µ̄(U ′) = µ̄(µ̄ ′(N)).
Finally, take s ∈ V(G) and t ↩ s such that s (t) (n) = a ⋅ b ⋅ c where b = xl∶m or xl∶m, for
some n, l,m ∈ N, and some a, xl∶m, c ∈ S∗. Finally let 0 ≤ l ′ ≤ m be the index for which
we want to prove the claim.

1. If s ∉ int(σ(S)), then by definition of reduction σ−1(s) = s. Moreover, for any
redex M ∈ M̄ we also have t ∉ µ̄(M), as per definition of unfolding. Therefore,
in accordance with invariance Lemma 6.14, s (t) = s (µ̄−1(t)). So let µ̄−1(tl) ↩
σ̄−1(s) be the unique vertex of U ′ such that the claim holds by IH. Now, since
s (µ̄−1(tl)) = s (tl), we trivially conclude that the claim still holds.

2. If s ∈ int(σ(S)), then letM ∈ M̄ such that t ∈M, and let µ ∈ µ̄ be the reduction step
onM. We proceed with a case analysis on the kind of the redex S of σ.

(a) Rules (!), (⊸), (a), (m). Absurd: by inspection of the definition of the re-
dexes, we verify that int(σ(S)) = ∅, contradicting the hypothesis of s ∈ int(σ(S)).

(b) Rule (d!). Let S be as in Figure 5.5c, and, since int(σ(S)) = {z0, . . . , zk},
let s = zi. Now, assume vertex names in M are as in S, but with the prime
symbol, and let t = z ′i ′ . Observe that in µ(M), as per definition of context
assignment, we have s (vi ′) = s (zi ′). But s (vi ′) belongs to C(M), where by
Lemma 6.14 it must have the same levelled context. Now, since vi ↪ vi ′ , let
v ′′i ′′ be the unique vertex in U ′ such that vi ↪ v ′′i ′′ and it satisfies the claim,
i.e. s (v ′′i ′′) (n) = a ⋅ xl ′∶m ⋅ c, while s (v ′′i ′′) (n ′) = s (v ′i ′) (n ′), for any n ′ ≠ n.
So, let M ′′ be the redex containing v ′′i ′′ , and µ ′′ be its reduction step. Since
it belongs to the C(M ′′), we find v ′′i ′′ also in µ ′′(M ′′) with the same levelled-
context. Consider z ′′i ′′ in µ ′′(M ′′) and verify not only that zi ↪ z ′′i ′′ , but also
that, as previously remarked, s (v ′′i ′′) = s (z ′′i ′′). Hence the claim.

(c) Rules (d?), (d ⊸), (d⊸̄), (s), (r⊸̄), (r?). The argument detailed in case 2b
can be applied here with only minor changes.

(d) Rule (tD). Let S be as in Figure 5.9, but let d be the level of !-link, and observe
that int(σ(S)) = ⋃1≤i≤h Bi, where Bi denotes the i-copy of the interior of the
box B. Let the names of vertices and boxes in M be as in S, but with prime
symbols. So let t ∈ B ′

i ′ and consider σ−1(t). Assume the downward crossing
of the i-th lift above B ′

i ′ has context !ne, Also, let s (µ−1(t)) (d) = f ⋅g, where
f = s (vi). Then, by definition of context assignment, we first observe the
following.

s (t) (n ′) = ⎧⎪⎪⎨⎪⎪⎩
s (σ−1(t)) if d ′ ≠ d;
f ⋅ e ⋅ g if d ′ = d. (6.208)

Now, we observe that we can apply IH on µ−1(t). Namely, for any n ≠ d and
for any xl∶m ≠ e (or its negation), appearing in s (µ−1(t)) at the n-th context,
we know there exists a unique vertex t ′ in U , such that σ−1(s) ↪ t ′ and for
which: in s (t ′) (n) is obtained from s (t) substituting xl∶m for xl ′∶m, while
s (t ′) (n ′) = s (µ−1(t)) (n ′), for any n ′ ≠ n.
Now observe that t ′ belongs to a box B ′′ in a redexM ′, so let µ ′ be its reduc-
tion step, which by definition of unfolding belongs to µ̄. Now, let t ′′ ∈ µ ′(t ′)

6.5. Unshared cost of reductions 145

be the vertex belonging in the i-th copy of the box B ′′, and verify that it
satisfies the claim.

∎
For every vertex in a SG graph, there exists a unique master vertex in its unfolding.

Lemma 6.17 (Master copy). Let N σ̄−−→∗
SG G and N µ̄−−→∗

UGRB U be two reduction sequences
such that σ̄ ↪ µ̄. For any v ∈ V(G) and any V ′ ⊂ V(U), if v ↪ V ′ then there exists a unique
vm ∈ V ′ such that s (vm) ≈ 1, and it is called the master copy of v.

Proof. Immediate from Proposition 6.2 by fixing in its statement i ′ = 0. ∎
For every k + 1-ary mux in a SG graph, there are exactly k boundary lifts its unfolding.

Lemma 6.18 (Arities of muxes and cardinalities of their boundary lifts). Let N σ̄−−→∗
SG G

and N µ̄−−→∗
UGRB U be two reduction sequences such that σ̄ ↪ µ̄. For any mux m ∈ L(G) of

arity k + 1, let L = {l ∈ bdL� (U) ∣m↪ l}. Then ∣L∣ = k.
Proof. Let m = ⟨u0, . . . uk (∣*⟩) z⟩ and consider the set L ′ ⊆ L(U) of any lift whose
premiss is the master copy of ui, for some 0 ≤ i ≤ k. Recall that, thanks to Lemma 6.17,
we know that for any i the master copy is unique, so ∣L ′∣ = k+1. Now by definition of the
unfolding relation, there is a sharing morphism between U and G which is connection-
preserving and surjective (cf. Definition 5.8). Therefore, the master copy of zmust be the
conclusion of a lift lm ∈ L ′, which consequently is a master lift. Now let Lb = L ′ ∖ lm and
notice that it contains all and only the boundary lifts that are unfolding ofm. Indeed, for
every li ∈ LB different than lm, we have ui ∉ Sh (U) while zi ∈ Sh (U). Thus Lb = L and
trivially ∣LB∣ = k. ∎
The unshared cost of a UG-reduction sequence is always equal to the cost of the SG-
sequence it simulates.

Lemma 6.19 (Correctness of CSG
UG). If N σ̄−−→∗

SG G and N µ̄−−→∗
UGRB U are two reduction

sequences such that σ̄↪ µ̄, then CSG(σ̄) = CSG
UG(µ̄).

Proof. We go by induction on ∣σ̄∣. The base case is trivial, because when ∣σ̄∣ = 0 we have
G = N and since G ↪U also U = N . This means that CSG(σ̄) = CSG

UG(µ̄) = 0, so the claim
vacuously holds. So assume ∣σ̄∣ > 0. Let G = σ(G ′) for some SG-reduction step σ on a re-
dex S such that G ′ = σ̄ ′(N); let U ′ ↩ G ′; and let µ̄↩ σ for some UG-reduction sequence
µ̄ on a set of redexes M̄ such that U = µ̄(U ′) = µ̄(µ̄ ′(N)). By inductive hypothesis we
also assume CSG

UG(µ̄ ′) = CSG(σ̄ ′), so we need to prove that CSG
UG(µ̄) = CSG(σ).

1. Suppose that S does not contain muxes, i.e. the rule of S is one of the following:(⊸), (!), (t). Then by Lemma 6.17, let M ∈ M̄ be the unique redex such that for
any v ′ ∈ M and any v ∈ S, if v ↪ v ′ then v ′ is the master copy of v. Now, let µ

146 6. Efficiency of sharing implementation

be the reduction of M and µ̄ ′′ be the reduction of M̄ ∖M. Now, observe that by
Definition 6.3 of CSG (see in particular Table 6.2) and Definition 6.18 of CSG

UG (see
in particular Table 6.4) we have CSG

UG(µ) = CSG(σ), while CSG
UG(µ̄ ′′) = 0. Therefore

CSG
UG(µ̄) = CSG(σ).

2. If S contains muxes, and is not a (s) rule, then let M̄ ′′ ⊂ M̄ be the set of any
redex in M̄ whose lifts are boundary. First, observe that, again by Definition 6.3
and 6.18 (cf. Table 6.2 and 6.4), for any reduction step µ ′′ on a redex of M̄ ′′,
we have CSG(σ) = k × CSG

UG(µ̄ ′′), where k + 1 is the number of premisses of the
mux of S. Conversely, for any reduction step µ ′′′ on a redex of M̄ ∖ M̄ ′′, as per
definition, CSG

UG(µ̄ ′′′) = 0. But by Lemma 6.18 we know that ∣M̄ ′′∣ = k. Thus,
CSG

UG(µ̄) = CSG(σ).
3. Otherwise S is a (s) rule. Let k + 1 and l + 1 be the number of premisses of the

positive and negative mux of S, respectively. Observe that by definition of reduction
(cf. Figure 5.6b) in σ(S) there are k+1 negative lifts with arity l+1, and l+1 positive
lifts with arity k + 1.
By Lemma 6.18 this implies that M̄ contains k positive boundary lifts and l negative
boundary lifts. Since by definition of boundary lift, there cannot be two boundary
lifts in a (s) redex, the boundary lifts of M̄ belong to different redexes. Now, again
per Lemma 6.18, it must be the case that µ̄(M̄) contains (k+1)× l negative lifts, and(l+1)×k positive lifts. But this means that µ̄ introduces k× l negative lifts and k× l
positive lifts, i.e. there are k × l redexes in M̄ made of two pseudo-boundary lifts
which become boundary when swapped. (This happens when the levelled context
of premiss of the positive lift is 1 everywhere but at the level of the negative lift,
where the context is identical to the variable occurrence of the and the negative
lift.) Since CSG

UG assign a unitary cost of such reduction, and 0 otherwise, we obtain
that CSG

UG(µ̄) = k × l = CSG(σ).
∎

6.6 Unshared cost comparison

Thanks to the careful analysis of the metrics on UG-reduction so far accomplished, we
are now able to prove the complexity bound. We first observe that for any UG-reduction,
the difference between its sharing cost and its mIELL cost is bounded by its boundary-
share-components cost (Lemma 6.20). Then, we proceed by bounding boundary-share-
components cost to a quadratic function of the mIELL cost (Lemma 6.21 and 6.22). In
such proof it is worth noticing that the only kind of reduction that we did not manage to
bound by a linear function is the swap within a boundary share component generating a
new component. In such a case, the bound depends linearly on the depth and quadratically
on the mIELL cost. Finally we conclude by Theorem 6.1, which compares CSG with CmIELL

for any pair of simulating reduction sequence.

Lemma 6.20 (Bound for unshared costs comparison). For any proof-net N and any reduc-
tion sequence N µ̄−−→∗

UGRB U :

CSG
UG(µ̄) −CmIELL

UG (µ̄) ≤ CbdShC
UG (µ̄). (6.209)

6.6. Unshared cost comparison 147

Proof. Given a step µ of µ̄, it suffices a mere inspection of Lemma 6.16 and Definition 6.18
and, in particular, a comparison of the corresponding cases of Table 6.3 and Table 6.4, to
immediately verify the inequation. ∎
Lemma 6.21 (Redundant boundary share components). Given a UG-graph U , and v ∈
bdLimSh (U), let L ∶ u ∼ v be the boundary lift chain of v and let µ̄ be a reduction sequence
on L. If n is the number of any (s)-step µ ∈ µ̄ such that ∆bdShC (µ) = 1, then

n ≤ `(U). (6.210)

Proof. By hypothesis, u ≫ v or v ≫ v. If both hold, then u = v and the claim is trivially
verified, because L = ∅. Otherwise, since the arguments of the two cases are identical, we
shall assume u≫ v. Let µ̄cs be the set of any (s)-step µ in µ̄ such that CbdShC

UG (µ) = 1.
We will now prove that for any level n there may be at most one step µ ∈ µ̄cs. This implies
the claim, because in the worst case L contains lifts of any level l ≤ `(U).
For the sake of contradiction, assume otherwise that L contains: a ∣+⟩n-link l, a ∣+⟩n ′ -link l ′,
and ∣-⟩n ′′ -link l ′′ such that there are two steps in µ̄ swapping both l, l ′ with l ′′. (The dual
situation with one ∣+⟩-link and two ∣-⟩-link is identical, hence omitted.) Let VarO(l) = a,
VarO(l ′) = b, and VarO(l ′′) = c. Then, there are some l-contexts γ1, γ2, γ3 such that:

s (v) = δ ⋅ γ1 ⋅ !na ⋅ γ2 ⋅ !n ′b ⋅ γ3´¹¹¸¹¹¶
γ0

⋅!n ′′c ⋅ γ4, (6.211)

where γ0 is the l-context of the downward path π that goes from u to the conclusion of l ′′.
Now, L contains only ∣*⟩-links, therefore any reductions in µ̄ is necessarily an (s)- or an(a)-rule. By hypothesis, there is no (a)-rule involving l, l ′ or l ′′, hence π is long enough
for any reduction step of µ̄. Therefore the context of π is invariant under any reduction
preceding the swap between l ′ and l ′′. For such (s)-step we hypothesised that in the
redex the lifts are interior, while in the reduct they are boundary. Thus s (γ0) (n ′) = b
while s (γ0) (m) = 1 for any m ≠ n ′. But given the presence of the weight of l, i.e. !na,
this implies that s (γ2) (n) = a, while s (γ2) (m) = 1, for any m ≠ n. Therefore that π
contains a ∣-⟩-link which annihilates with l. Absurd. ∎
Lemma 6.22 (Bound for closed border reduction). For any UGRB-reduction sequence µ̄ on
a proof-net N , CbdShC

UG (µ̄) is bounded by a quadratic function on ĈmIELL
UG (µ̄).

Proof. Let µ̄ be a UGRB-reduction sequence. We partition the reduction steps of µ̄ into
three sets depending on their action on bdShC:

µ̄e the set of any step µ of µ̄ such that ∆bdShC (µ) = −1 (i.e. an erasure of a boundary
share component), hence µ is of kind (a), (m);

µ̄cs the set of any step µ of µ̄ such that ∆bdShC (µ) = 1 and µ is of kind (s) (i.e. a creation
of boundary share component with a swap);

µ̄co the set of any step µ of µ̄ that does not belong to µ̄e or µ̄cs.

148 6. Efficiency of sharing implementation

Hence, by construction:

CbdShC
UG (µ̄) = CbdShC

UG (µ̄e) +CbdShC
UG (µ̄cs) +CbdShC

UG (µ̄co), (6.212)

so we can separately discuss the three addends.

1. CbdShC
UG (µ̄e). We observe that, since # (bdShC (⋅)) is always non negative, the num-

ber of erasures cannot outnumber the creations. Therefore,

CbdShC
UG (µ̄e) ≤ CbdShC

UG (µ̄cs) +CbdShC
UG (µ̄co). (6.213)

2. CbdShC
UG (µ̄cs). Let µ̄ ′cs be a maximal subsequence of µ̄ such that, if µ̄ = ν̄µ̄ ′csω̄ for

some reduction sequences ν̄, ω̄, then any step of µ̄ ′cs acts on the boundary lift chain
L of every v ∈ bdLimSh (ν̄(U)). Now, by Lemma 6.21 we have that the normalisa-
tion of L entail and increase of # (bdShC) of at most `(U). Moreover, by Fact 6.2
we know that # (bdLimSh (ν̄(U))) ≤ # (intSh (ν̄(U))). Therefore

CbdShC
UG (µ̄ ′cs) ≤ `(U) × # (intSh (ν̄(U))) , (6.214)

and simplier:

≤ `(U) × ĈmIELL
UG (µ̄). (6.215)

Now, observe that the distinct sub-sequences of µ̄ defined as µ̄ ′cs are at most as many
as the number of steps µ ∈ µ̄ such that CmIELL

UG (µ) = 0. Therefore:

CbdShC
UG (µ̄cs) ≤ `(U) ×CmIELL

UG (µ) × ĈmIELL
UG (µ), (6.216)

where, since CmIELL
UG (µ) ≤ ĈmIELL

UG (µ), we can loosen and simplify as:

CbdShC
UG (µ̄cs) ≤ `(U) × (ĈmIELL

UG (µ))2. (6.217)

3. CbdShC
UG (µ̄co). Recall from the account provided by Lemma 6.16 in Table 6.3 that,

for any step µ ∈ µ̄co, CbdShC
UG (µ) ≤ CmIELL

UG (µ). Therefore,

CbdShC
UG (µ̄co) ≤ CmIELL

UG (µ̄co) (6.218)
≤ CmIELL

UG (µ̄) (6.219)
≤ ĈmIELL

UG (µ̄). (6.220)

Now we go back to (6.212) and substitute first (6.213):

CbdShC
UG (µ̄) ≤ 2 × (CbdShC

UG (µ̄cs) +CbdShC
UG (µ̄co)) (6.221)

and then (6.217) and (6.220)

CbdShC
UG (µ̄) ≤ 2 × (`(U) × (ĈmIELL

UG (µ̄))2 + ĈmIELL
UG (µ̄)) (6.222)

≤ 2 × ĈmIELL
UG (µ̄) + 2 × `(U) × (ĈmIELL

UG (µ̄))2 . (6.223)

∎

6.7. Discussion 149

Proof of Theorem 6.1. By definition of↣, there exists an unshared graph U such that G ↪
U ↦ N and there exists an intermediate unshared reduction µ̄ ∶ N −→∗

UG U . On one side,
by Lemma 6.15, we know that CmIELL(ρ̄) = ĈmIELL

UG (µ̄), and on the other, by Lemma 6.19,
we similarly have: CSG(σ̄) = CSG

UG(µ̄).
Now, as per Lemma 6.22 and Lemma 6.20, there exists a quadratic function f such that:

CSG
UG(µ̄) ≤ CmIELL

UG (µ̄) + f (ĈmIELL
UG (µ̄)) . (6.224)

But since CmIELL
UG (µ̄) ≤ ĈmIELL

UG (µ̄), by definition:

CSG
UG(µ̄) ≤ f (ĈmIELL

UG (µ̄)) , (6.225)

therefore

CSG(σ̄) = CSG
UG(µ̄) ≤ f (ĈmIELL

UG (µ̄)) = f (CmIELL(ρ̄)) . (6.226)

Quod erat demonstrandum. ∎

6.7 Discussion

6.7.1 Related works

Baillot, Coppola, and Dal Lago [2011] proved a results similar to ours. In particular, they
show that for any ILAL (or IEAL) proof-net N , the length of a SG-normalisation sequence
on N and a read-back sequence is bounded by a polynomial [ibidem, Proposition 12] (or
Kalmar-elementary [ibidem, Proposition 11]) function in the size of N . This essentially
means that SG-reduction cannot do dramatically worse than the reference systems, it can-
not overstep their characteristic complexity classes. From a pragmatical point of view,
this still tells us little, since one may think that the overhead is indeed polynomial, or
even Kalmar-elementary. The first and more important advance we have presented is that
we proved a stronger and finer limitation — a quadratic bound, whose dominating por-
tion are a special case of swaps. Moreover, since we bound the complexity of any SGRB
reduction sequence, and not necessarily a normalising one, our result is more generally
stated, so it can be directly applied even with weaker notion of normal forms.

Their proof rests on a well-known correspondence between sharing reductions and GoI,
adapting the ideas of the quantitative context semantics [Dal Lago, 2009]. Also, it seems
hardly adaptable to prove a similar result for the general case, because their argument
directly exploits the known complexity bounds of the IEAL and ILAL. We instead accom-
plished the result directly by more syntactical means, in a dynamic comparison of the two
cost measures. Such technique and the tool of sharing contexts represents a complexity-
aware extension of the syntactical approach that has been already fruitfully used before
[Guerrini, Martini, and Masini, 2003].

150 6. Efficiency of sharing implementation

6.7.2 Open questions

Not much later its introduction, empirical benchmarks showed that sharing graphs can
be a very efficient implementation of the λ-calculus. Terms that allow massive amount of
sharing, indeed, can be normalised by a sharing-graph-based machine in polynomial time,
whilst that requires exponential time with ordinary implementations in functional pro-
gramming languages [Asperti, Giovannetti, and Naletto, 1996]. But the sharing machinery
comes at a price, that is still unknown for the general case, but that in the restricted case of
elementary proof-nets has been bounded, now quite satisfactorily, to a quadratic function.
The result and the techniques open different questions.

Can we prove a similar complexity bound also in the general case of MELL proof-nets?
Can we do so with the quantitative syntactic approach? The research hypothesis one may
require is the legitimation of a cost for exponential reductions that always depends on
the size of a box, even when they act on box nesting relocating one into another (e.g.
promotion against dereliction).

Also on the same line, can we find not only a tight upper bound to the overhead intro-
duced by optimal implementations, which gives a worst-case limitation, but also some
convincing best-case limitation? How much share is needed in order for the trade-off to
be convenient? When does the mux management overhead is amortised by the efficiency
of sharing?

Can we relate SG with other more concrete computational models like abstract machines?
Some of them, like the IAM [Laurent, 2001], are of particular interest because of their
distinguished space efficiency.

Sharing contexts appear as a powerful tool to study SG in their unshared counterpart.
Not only they can be used to provide a simple proof of their completeness with re-
spect to normalisation, since the absence of deadlocks is obtainable as consequence of
the positivity property, very similarly to what was done by Guerrini [1999], though more
simply, thanks to the restricted setting of mIELL. But also offer a precise quantitative re-
lation between a shared vertex in a sharing graph and its unfolding in the unshared graph
(cf. Proposition 6.2). This makes of sharing context a promising tool to tackle all these
complexity-related questions about sharing implementation and Lévy families, more in
general.

We identified a kind of reduction steps that is critical for the complexity bound. Can it
be directly lowered finding a tighter bound, perhaps linear? If not, are there any tunings
for the rewriting system under which the problem can be circumvented? For instance,
one may explore the idea to introduce additional rules to reduce the number of redundant
swap rules, as it was already proposed and implemented for redundant index-management
links [Asperti and Chroboczek, 1997] [Asperti and Guerrini, 1998, Chapter 9].

Index

Antecedent, see Vertex order relations

Box, 14
auxiliary door, 14
closed, 14
depth, 14
Elementary, 94
Exponential, 14
principal door, 14

Closed reduction, 19
Consequent, see Vertex order relations
Context

mMELL, 17
resource calculus, 33

completion, 33
hole, 33
simple, 33

resource net
multi-hole, 72

single-hole, 17
Cost

mIELL reduction, 110
RBreduction, 111
SG reduction, 111

Crossing
of an outermost box, 69

Cut elimination, see Reduction

Depth, see Box depth
Dynamic algebra, 24

Execution
mMELL, 26

Expansion
λ-term, 66
mMELL net, 63

Exponential box, see Box

Graph
SG, 97

λ-term, 15
expansion, see Expansion, λ-term
mMELL proof-net translation, seeTrans-

lation, λ-term in mMELL proof-
net

Link, 12
abstraction, 13
application, 13
arity, 12
co-contraction, 35
co-weakening, 35
conclusion, 12
constant, 13
contraction, 13
kind, 12
mMELL, 13
polarity, 12
premiss, 12
promotion, 13
resource, 35
SG, 96
weakening, 13

L∗, see Dynamic Algebra

mELL
reduction, see Reduction, mELL

mIELL
proof-net, see Net, mIELL proof-net
reduction cost, see Cost, mIELL reduc-

tion
Mixed net, 63
mLLL

reduction, see Reduction, mLLL
mMELL

execution, see Execution
expansion, see Expansion, net
proof-net, see Net
reduction, see Reduction

Multiplexer, see Link, SG

152 INDEX

Net
mMELL proof-net, 15
mIELL proof-net, 94
pre-net, 13
size, 110
variable, 16

bounded, 16
free, 16

Normal form, 16

Path, 15
assuming, 15
atomic, 15
bouncing, 15
comprehensive, 44
concatenation, 15
concluding, 15
crossing, 21
cyclic, 15
downward, 111
equality, 15
execution, 20
expanded weighting, 84
expansion-regularity, 84
forms

redex crossing, 22
input-output, 112
length, 15
long enough, 21
maximal, 20
persistent, 22
regularity

resource net, 54
resource reduction, 45
reversal, 15
straight, 15
switching, 15
trivial, 15
twisting, 15
upward, 112
weighting

resource net, 53
Pre-net, see Net
Proof-net

mMELL, see Net

RB
reduction cost, see Cost, RB reduction

RCF, see Redex crossing form
Redex, see Reduction
Redex crossing form, see Path forms
Reduct, 16
Reduction

RB, 97
SG, 96
mELL, 94
mLLL, 94
mMELL, 17
resource calculus, 33
resource net, 37

expanded, 73
parallel, 73

sequence, 16
Resource

net, 35
context, 37
permutation, 37
with promotion, see Mixed net

pre-net, 35
simple pre-net, 35

Resource calculus
poly-term, 32
term, 32

Resource dynamic algebra, 52
Resource λ-term

translation in resource net, see Transla-
tion, resource λ-term in resource
nets

Resource net
execution, 54

rL∗, see Resource dynamic algebra

SG
reduction cost, see Cost, SG reduction

SG
graph, 97

Sharing context
levelled, 116

negative, 116
positive, 116

lifting, 116
monoid, 116
negative, 116
positive, 116
restriction, 116
stable form, 116

INDEX 153

Sharing graph, see SG, graph
S∗

see Sharing context, monoid, 116
Structure

mMELL structure, 14

Translation
λ-term in mMELL proof-net, 15
λ-term in resource net, 36

Type
ground, 13
mMELL, 13
polarised, 13
typing, 13

Variable occurrence, 115
labelling, 115

Vertex
order relations

antecedent, 15
consequent, 15

typing, see Type

Weight
weighting

mMELL, 25

154 INDEX

Bibliography

Beniamino Accattoli. Linear Logic and Strong Normalization. In Femke van Raamsdonk,
editor, 24th International Conference on Rewriting Techniques and Applications, RTA
2013, June 24-26, 2013, Eindhoven, The Netherlands, volume 21 of LIPIcs, page 39–54.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. ISBN 978-3-939897-53-8.
doi: 10.4230/LIPIcs.RTA.2013.39.

Sandra Alves and Mário Florido. Weak linearization of the lambda calculus. Theoretical
Computer Science, 342(1):79–103, 2005. ISSN 0304-3975. doi: 10.1016/j.tcs.2005.06.005.
URL http://www.sciencedirect.com/science/article/pii/S0304397505003403.

Andrea Asperti. Light affine logic. In Logic in Computer Science, 13th International Sym-
posium, Proceedings, page 300–308. IEEE Computer Society, 1998.

Andrea Asperti and Juliusz Chroboczek. Safe Operators: Brackets Closed Forever Op-
timizing Optimal lambda-Calculus Implementations. Applicable Algebra in Engineering,
Communication and Computing, 8(6):437–468, December 1997. ISSN 0938-1279, 1432-
0622. doi: 10.1007/s002000050083. URL http://link.springer.com/article/10.

1007/s002000050083.

Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Program-
ming Languages, volume 45 of Cambridge tracts in theoretical computer science. Cam-
bridge University Press, 1998.

Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the lambda-
calculus. Theoretical Computer Science, 142(2):277–297, 1995. ISSN 0304-3975. doi:
10.1016/0304-3975(94)00279-7.

Andrea Asperti and Harry G. Mairson. Parallel Beta Reduction Is Not Elementary Re-
cursive. Information and Computation, 170(1):49–80, 2001. doi: 10.1006/inco.2001.2869.

Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions on
Computational Logic (TOCL), 3(1):137–175, 2002.

Andrea Asperti, Vincent Danos, Cosimo Laneve, and Laurent Regnier. Paths in the
lambda-calculus. In Logic in Computer Science, 1994, page 426–436. IEEE, 1994. doi:
10.1109/LICS.1994.316048.

Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The Bologna optimal
higher-order machine. Journal of Functional Programming, 6(6):763–810, November
1996. ISSN 1469-7653, 0956-7968. doi: 10.1017/S0956796800001994. URL https:

http://www.sciencedirect.com/science/article/pii/S0304397505003403
http://link.springer.com/article/10.1007/s002000050083
http://link.springer.com/article/10.1007/s002000050083
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343

156 BIBLIOGRAPHY

//www.cambridge.org/core/journals/journal-of-functional-programming/

article/the-bologna-optimal-higher-order-machine/

1F2763B0F931680F9B15BDC750BEB343.

Andrea Asperti, Paolo Coppola, and Simone Martini. (Optimal) Duplication is not ele-
mentary recursive. Information and Computation, 193, 2004.

Clément Aubert and Thomas Seiller. Characterizing co-NL by a group action. Mathem-
atical Structures in Computer Science, FirstView:1–33, December 2014. ISSN 1469-8072.
doi: 10.1017/S0960129514000267. URL http://journals.cambridge.org/article_

S0960129514000267.

Clément Aubert and Thomas Seiller. Logarithmic Space and Permutations. Informa-
tion and Computation, November 2015. URL https://hal.archives-ouvertes.fr/

hal-01005701/document. To appear.

Clément Aubert, Marc Bagnol, and Thomas Seiller. Unary Resolution: Characteriz-
ing Ptime. In Bart Jacobs and Christof Löding, editors, Foundations of Software Sci-
ence and Computation Structures, number 9634 in Lecture Notes in Computer Science,
page 373–389. Springer Berlin Heidelberg, April 2016. ISBN 978-3-662-49629-9 978-3-
662-49630-5. doi: 10.1007/978-3-662-49630-5_22. URL http://link.springer.com/

chapter/10.1007/978-3-662-49630-5_22.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, New York, NY, USA, 1998. ISBN 0-521-45520-0.

Patrick Baillot, Paolo Coppola, and Ugo Dal Lago. Light logics and optimal reduction:
Completeness and complexity. Information and Computation, 209(2):118–142, 2011.

Gérard Boudol. The Lambda-calculus with multiplicities. Research report RR-2025, IN-
RIA, 1993. URL https://hal.inria.fr/inria-00074646.

Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-
Value Solvability. In Anca Muscholl, editor, Foundations of Software Science and Com-
putation Structures, number 8412 in Lecture Notes in Computer Science, page 103–118.
Springer Berlin Heidelberg, April 2014. ISBN 978-3-642-54829-1, 978-3-642-54830-7.

Ugo Dal Lago. Context semantics, linear logic, and computational complexity. ACM
Transactions on Computational Logic (TOCL), 10(4):25:1–25:32, August 2009. ISSN 1529-
3785. doi: 10.1145/1555746.1555749.

Ugo Dal Lago and Patrick Baillot. On light logics, uniform en-
codings and polynomial time. Mathematical Structures in Com-
puter Science, 16(4):713–733, August 2006. ISSN 1469-8072, 0960-
1295. doi: 10.1017/S0960129506005421. URL https://www.cambridge.

org/core/journals/mathematical-structures-in-computer-science/

article/on-light-logics-uniform-encodings-and-polynomial-time/

42C3872CADDAD642FF742AB5BAD31497.

Ugo Dal Lago, Claudia Faggian, Ichiro Hasuo, and Akira Yoshimizu. The Geometry of
Synchronization. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE

https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/the-bologna-optimal-higher-order-machine/1F2763B0F931680F9B15BDC750BEB343
http://journals.cambridge.org/article_S0960129514000267
http://journals.cambridge.org/article_S0960129514000267
https://hal.archives-ouvertes.fr/hal-01005701/document
https://hal.archives-ouvertes.fr/hal-01005701/document
http://link.springer.com/chapter/10.1007/978-3-662-49630-5_22
http://link.springer.com/chapter/10.1007/978-3-662-49630-5_22
https://hal.inria.fr/inria-00074646
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/on-light-logics-uniform-encodings-and-polynomial-time/42C3872CADDAD642FF742AB5BAD31497
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/on-light-logics-uniform-encodings-and-polynomial-time/42C3872CADDAD642FF742AB5BAD31497
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/on-light-logics-uniform-encodings-and-polynomial-time/42C3872CADDAD642FF742AB5BAD31497
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/on-light-logics-uniform-encodings-and-polynomial-time/42C3872CADDAD642FF742AB5BAD31497

BIBLIOGRAPHY 157

Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, page 35:1–35:10, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2886-9. doi: 10.1145/2603088.2603154.
URL http://doi.acm.org/10.1145/2603088.2603154.

Ugo Dal Lago, Claudia Faggian, Benoit Valiron, and Akira Yoshimizu. Parallelism and
Synchronization in an Infinitary Context. In 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), page 559–572, July 2015. doi: 10.1109/LICS.2015.58.

Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-
order probabilistic computation. Information and Computation, 209(6):966–991, 2011.
ISSN 0890-5401. doi: 10.1016/j.ic.2011.02.001.

Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Math-
ematical Logic, 28(3):181–203, 1989. ISSN 0933-5846. URL http://dx.doi.org/10.

1007/BF01622878. 10.1007/BF01622878.

Vincent Danos and Laurent Regnier. Proof-nets and the Hilbert space. In Jean-Yves
Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, page
307–328. Cambridge University Press, 1995. ISBN 9780511629150. doi: 10.1017/
CBO9780511629150.016.

Vincent Danos, Marco Pedicini, and Laurent Regnier. Directed virtual reductions. In Dirk
van Dalen and Marc Bezem, editors, Computer Science Logic, number 1258 in Lecture
Notes in Computer Science, page 76–88. Springer Berlin Heidelberg, 1997. ISBN 978-3-
540-63172-9, 978-3-540-69201-0. URL http://link.springer.com/chapter/10.1007/

3-540-63172-0_33.

Marc De Falco. The geometry of interaction of differential interaction nets. In Logic
in Computer Science, 2008. LICS’08. 23rd Annual IEEE Symposium on, page 465–475.
IEEE, June 2008. doi: 10.1109/LICS.2008.23.

Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof Nets and Explicit
Substitutions. In Jerzy Tiuryn, editor, Foundations of Software Science and Computation
Structures, number 1784 in Lecture Notes in Computer Science, pages 63–81. Springer
Berlin Heidelberg, March 2000. ISBN 978-3-540-67257-9 978-3-540-46432-7. URL
http://link.springer.com/chapter/10.1007/3-540-46432-8_5. DOI: 10.1007/3-
540-46432-8_5.

T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer Science, 364
(2):166–195, 2006a. ISSN 0304-3975. doi: 10.1016/j.tcs.2006.08.003. URL http://www.

sciencedirect.com/science/article/pii/S0304397506005299. Logic, Language,
Information and Computation11th Workshop on Logic, Language, Information and
Computation.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1):1–41, 2003. ISSN 0304-3975. doi: 10.1016/S0304-3975(03)00392-X.

Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electronic Notes in
Theoretical Computer Science, 123:35–74, 2005.

Thomas Ehrhard and Laurent Regnier. Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe,

http://doi.acm.org/10.1145/2603088.2603154
http://dx.doi.org/10.1007/BF01622878
http://dx.doi.org/10.1007/BF01622878
http://link.springer.com/chapter/10.1007/3-540-63172-0_33
http://link.springer.com/chapter/10.1007/3-540-63172-0_33
http://link.springer.com/chapter/10.1007/3-540-46432-8_5
http://www.sciencedirect.com/science/article/pii/S0304397506005299
http://www.sciencedirect.com/science/article/pii/S0304397506005299

158 BIBLIOGRAPHY

and JohnV. Tucker, editors, Logical Approaches to Computational Barriers, volume 3988
of Lecture Notes in Computer Science, pages 186–197. Springer Berlin Heidelberg, 2006b.
ISBN 978-3-540-35466-6. doi: {10.1007/11780342_20}.

Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403(2):347–372, 2008. doi: 10.1016/j.tcs.
2008.06.001.

M. Fernández, I. Mackie, and F.-R. Sinot. Closed reduction: explicit substitutions without
alpha-conversion. Mathematical Structures in Computer Science, 15(2):343–381, April
2005. ISSN 1469-8072, 0960-1295. doi: 10.1017/S0960129504004633.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. ISSN
0304-3975. doi: 10.1016/0304-3975(87)90045-4.

Jean-Yves Girard. Geometry of interaction I: Interpretation of System F. Studies in Logic
and the Foundations of Mathematics, 127:221–260, 1989. doi: 10.1016/S0049-237X(08)
70271-4.

Jean-Yves Girard. Light linear logic. In Logic and computational complexity, page 145–176.
Springer, 1995.

Georges Gonthier, Martìn Abadi, and Jean-Jacques Lévy. The geometry of optimal
lambda reduction. In Proceedings of the 19th ACM SIGPLAN SIGACT symposium
on Principles of programming languages, POPL ’92, page 15–26. ACM, 1992a. doi:
10.1145/143165.143172.

Georges Gonthier, Martìn Abadi, and Jean-Jacques Lévy. Linear Logic Without Boxes. In
LICS, page 223–234. IEEE Computer Society, 1992b. ISBN 0-8186-2735-2. doi: 10.1109/
LICS.1992.185535.

Giulio Guerrieri and Lorenzo Tortora de Falco. A new point of view on the Taylor expan-
sion of proof-nets and uniformity. Presented at Linearity 2014, the third International
Workshop on Linearity, Vienna, July 2014.

Stefano Guerrini. A General Theory of Sharing Graphs. TCS: Theoretical Computer
Science, 227, 1999.

Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for sharing proof-nets.
Theoretical computer science, 294(3):379–409, 2003.

Stefano Guerrini, Thomas Leventis, and Marco Solieri. Deep into optimality – complexity
and correctness of sharing implementation of bounded logics. Presented at DICE 2012,
Third International Workshop on Developments in Implicit Complexity, Tallin, 2012.
URL http://ms.xt3.it/research/DeepIntoOptimality_2012-02-17.pdf.

Vinod Kathail. Optimal Interpreters for lambda-calculus based functional languages. PhD
thesis, Massachusetts Institute of Technology, 1990.

Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Sym-
bolic Computation, 20(3):199–207, 2007. ISSN 1388-3690, 1573-0557. doi: 10.1007/
s10990-007-9018-9.

http://ms.xt3.it/research/DeepIntoOptimality_2012-02-17.pdf

BIBLIOGRAPHY 159

Yves Lafont. Interaction Nets. In Proceedings of the 17th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’90, page 95–108. ACM, 1990.
ISBN 0-89791-343-4. doi: 10.1145/96709.96718. URL http://doi.acm.org/10.1145/

96709.96718.

John Lamping. An algorithm for optimal lambda calculus reduction. In 17th ACM SIG-
PLAN SIGACT Symposium on Principles of Programming Languages, page 16–30. ACM,
1989. doi: 10.1145/96709.96711.

Olivier Laurent. A Token Machine for Full Geometry of Interaction (Extended Abstract).
In Samson Abramsky, editor, Typed Lambda Calculi and Applications ’01, volume 2044
of Lecture Notes in Computer Science, page 283–297. Springer, May 2001.

Olivier Laurent. Étude de la polarisation en logique. phdthesis, Université de la Médi-
terranée - Aix-Marseille II, March 2002. URL https://tel.archives-ouvertes.fr/

tel-00007884/document.

Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda Calcul. PhD thesis,
Université Paris VII, 1978.

Jean-Jacques Lévy. Optimal Reductions in the Lambda-Calculus. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press, 1980.

Ian Mackie. The geometry of interaction machine. In POPL 95 Proceedings of the
22nd ACM SIGPLAN SIGACT symposium on Principles of programming languages, page
198–208. ACM, 1995. doi: 10.1145/199448.199483.

Ian Mackie. Efficient lambda-Evaluation with Interaction Nets. In Vincent van
Oostrom, editor, Rewriting Techniques and Applications, number 3091 in Lecture Notes
in Computer Science, pages 155–169. Springer Berlin Heidelberg, 2004. ISBN 978-3-
540-22153-1 978-3-540-25979-4. URL http://link.springer.com/chapter/10.1007/

978-3-540-25979-4_11.

Harry G. Mairson. From hilbert spaces to dilbert spaces: Context semantics made simple.
In In 22 Nd Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 2–17. Springer-Verlag, 2002.

Damiano Mazza. Infinitary Affine Proofs. Mathematical Structures in Computer Science,
FirstView:1–22, 12 2015a. ISSN 1469-8072. doi: 10.1017/S0960129515000298. URL
http://journals.cambridge.org/article_S0960129515000298.

Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In Stephan
Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015),
volume 41 of Leibniz International Proceedings in Informatics (LIPIcs), page 24–40, Dag-
stuhl, Germany, 2015b. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-
3-939897-90-3. doi: 10.4230/LIPIcs.CSL.2015.24. URL http://drops.dagstuhl.de/

opus/volltexte/2015/5405.

Damiano Mazza and Michele Pagani. The Separation Theorem for Differential Interac-
tion Nets. In Nachum Dershowitz and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, number 4790 in Lecture Notes in Com-

http://doi.acm.org/10.1145/96709.96718
http://doi.acm.org/10.1145/96709.96718
https://tel.archives-ouvertes.fr/tel-00007884/document
https://tel.archives-ouvertes.fr/tel-00007884/document
http://link.springer.com/chapter/10.1007/978-3-540-25979-4_11
http://link.springer.com/chapter/10.1007/978-3-540-25979-4_11
http://journals.cambridge.org/article_S0960129515000298
http://drops.dagstuhl.de/opus/volltexte/2015/5405
http://drops.dagstuhl.de/opus/volltexte/2015/5405

160 BIBLIOGRAPHY

puter Science, page 393–407. Springer Berlin Heidelberg, January 2007. ISBN 978-3-
540-75558-6 978-3-540-75560-9. URL http://link.springer.com/chapter/10.1007/

978-3-540-75560-9_29.

Damiano Mazza and Kazushige Terui. Parsimonious Types and Non-uniform Com-
putation. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bet-
tina Speckmann, editors, Automata, Languages, and Programming, Proceedings of IC-
ALP, volume 9135 of Lecture Notes in Computer Science, page 350–361. Springer Berlin
Heidelberg, 2015. ISBN 978-3-662-47665-9. doi: 10.1007/978-3-662-47666-6_28. URL
http://dx.doi.org/10.1007/978-3-662-47666-6_28.

Michele Pagani and Christine Tasson. The Inverse Taylor Expansion Problem in Linear
Logic. In 24th Annual IEEE Symposium on Logic In Computer Science, 2009. LICS ’09,
page 222–231, August 2009. doi: 10.1109/LICS.2009.35.

Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second
order linear logic. Theoretical Computer Science, 411(2):410–444, January 2010. ISSN
0304-3975. doi: 10.1016/j.tcs.2009.07.053. URL http://www.sciencedirect.com/

science/article/pii/S0304397509005180.

Michele Pagani and Paolo Tranquilli. Parallel Reduction in Resource Lambda-Calculus.
In Zhenjiang Hu, editor, Programming Languages and Systems, 7th Asian Symposium
(APLAS 2009), volume 5904 of Lecture Notes in Computer Science., page 226–242, 2009.

Michele Pagani, Peter Selinger, and Benoit Valiron. Applying Quantitative Semantics
to Higher-Order Quantum Computing. In P. Sewell, editor, The 41th Annual ACM
SIGPLAN SIGACT Symposium on Principles of Programming Languages, POPL14, San
Diego, USA. ACM, 2014. doi: 10.1145/2535838.2535879.

Marco Pedicini and Francesco Quaglia. PELCR: Parallel Environment for Optimal
Lambda-calculus Reduction. ACM Transactions on Computational Logic, 8, 3(3), July
2007. ISSN 1529-3785. doi: 10.1145/1243996.1243997. URL http://doi.acm.org/10.

1145/1243996.1243997.

Marco Pedicini, Giulio Pellitta, and Mario Piazza. Sequential and Parallel Abstract Ma-
chines for Optimal Reduction. In Preproceedings of the 15th Symposium on Trends in
Functional Programming (TFP2014), 2014.

Matthieu Perrinel. On Context Semantics and Interaction Nets. In Proceedings of the
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, page 73:1–73:10, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2886-9. doi: 10.1145/2603088.2603155. URL http://doi.acm.org/10.1145/

2603088.2603155.

Jorge Sousa Pinto. Parallel Implementation Models for the Lambda-Calculus Using the
Geometry of Interaction. In Samson Abramsky, editor, Typed Lambda Calculi and
Applications, volume 2044 of Lecture Notes in Computer Science, page 385–399. Springer
Berlin Heidelberg, 2001. ISBN 978-3-540-41960-0. doi: 10.1007/3-540-45413-6_30.

Laurent Regnier. Lambda-calcul et réseaux. PhD thesis, Université Paris VII, 1992.

http://link.springer.com/chapter/10.1007/978-3-540-75560-9_29
http://link.springer.com/chapter/10.1007/978-3-540-75560-9_29
http://dx.doi.org/10.1007/978-3-662-47666-6_28
http://www.sciencedirect.com/science/article/pii/S0304397509005180
http://www.sciencedirect.com/science/article/pii/S0304397509005180
http://doi.acm.org/10.1145/1243996.1243997
http://doi.acm.org/10.1145/1243996.1243997
http://doi.acm.org/10.1145/2603088.2603155
http://doi.acm.org/10.1145/2603088.2603155

BIBLIOGRAPHY 161

Marco Solieri. Ottimalità dell’ottimalità: complessità della riduzione su grafi
di condivisione. Master’s thesis, Alma Mater Studiorum, Università di
Bologna, November 2011. URL http://amslaurea.cib.unibo.it/2744/1/

Solieri-OttimalitaDellOttimalita.pdf.

Marco Solieri. Geometry of Resource Interaction – A Minimalist Approach. In
Sandra Alves and Iliano Cervesato, editors, Proceedings Third International Workshop
on Linearity, Vienna, Austria, 13th July, 2014, volume 176 of Electronic Proceedings in
Theoretical Computer Science, page 79–94. Open Publishing Association, 2015. doi:
10.4204/EPTCS.176.7. URL http://arxiv.org/abs/1502.04775.

Marco Solieri. Geometry of Resource Interaction and Taylor-Ehrhard-Regnier Expansion
of Lambda-terms - A Minimalist Approach. Mathematical Structures in Computer Sci-
ence, 2016. URL http://ms.xt3.it/research/GoRI-Taylor_2016-09-07.pdf. To
appear.

Richard Statman. The Typed lambda-Calculus is not Elementary Recursive. Theoretical
Computer Science, 9:73–81, 1979. doi: 10.1016/0304-3975(79)90007-0.

Paolo Tranquilli. Intuitionistic differential nets and lambda-calculus. Theoretical Computer
Science, 412(20):1979–1997, April 2011. ISSN 03043975. doi: 10.1016/j.tcs.2010.12.022.
URL http://linkinghub.elsevier.com/retrieve/pii/S0304397510007139.

Lionel Vaux. On Linear Combinations of Lambda-Terms. In Franz Baader, editor, Term
Rewriting and Applications, volume 4533 of Lecture Notes in Computer Science, page
374–388. Springer, 9 2007. ISBN 978-3-540-73447-5. doi: 10.1007/978-3-540-73449-9_28.
URL http://dx.doi.org/10.1007/978-3-540-73449-9_28.

http://amslaurea.cib.unibo.it/2744/1/Solieri-OttimalitaDellOttimalita.pdf
http://amslaurea.cib.unibo.it/2744/1/Solieri-OttimalitaDellOttimalita.pdf
http://arxiv.org/abs/1502.04775
http://ms.xt3.it/research/GoRI-Taylor_2016-09-07.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0304397510007139
http://dx.doi.org/10.1007/978-3-540-73449-9_28

	Introduction
	Proof nets
	Geometry of Interaction
	Taylor-Ehrhard-Regnier expansion and resource calculus
	Light logics
	Sharing graphs
	Lévy-optimal reduction
	Summary of contributions
	Superposition and expansion (Part I)
	Sharing and efficiency (Part II)

	Lambda-calculus, linear logic and geometry of interaction
	Introduction
	Nets and terms
	Pre-nets
	Proof-nets and paths
	Lambda terms and nets

	Proof-net reductions
	General notions
	Closed strategy

	Execution paths
	Statics
	Dynamics
	Closed dynamics

	Computation as path execution
	Dynamic algebra
	Equivalence of execution and reduction

	I Superposition and expansion
	Geometry of Resource Interaction
	Introduction
	Resource calculus
	Syntax
	Reduction

	Resource interaction nets
	Definition
	Term translation
	Reduction

	Resource paths
	Statics
	Dynamics
	Comprehensiveness and bijection
	Confluence and persistence

	Resource execution
	Dynamic algebra and execution
	Invariance and regularity

	Discussion
	Related works
	Open questions
	Higher expressivity
	Geometry of differential interaction

	Taylor-Ehrhard-Regnier Expansion and Geometry of Interaction
	Introduction
	Expansion and paths computation
	Outline

	Taylor-Ehrhard-Regnier expansion
	Net expansion
	Term expansion and translation
	Path expansion

	Expansion and reduction
	Commutativity of reduction and expansion
	Commutativity on nets
	Commutativity on paths

	Expansion and execution
	Discussion
	Related works
	Open questions
	Infinite paths
	Resource abstract machine for the lambda-calculus
	Combinatorics of path expansion

	II Sharing and efficiency
	Sharing implementation of bounded logics
	Introduction
	Elementary and light proof-nets
	Sharing implementation
	Definition
	Rewriting properties

	Adequacy properties
	Correctness
	Weak completeness
	Optimality

	Correctness by syntactical simulation
	Unshared graphs
	From sharing graphs to unshared graphs
	From unshared graphs to proof-nets
	From sharing graphs to proof-nets

	Efficiency of sharing implementation
	Introduction
	Cost measures
	Input/output paths
	Statics
	Dynamics

	Sharing contexts
	Variable occurrences and sharing contexts
	Positivity
	Path irrelevance

	Unshared cost of reductions
	Share
	Unshared cost of mIELL reduction
	Unshared cost of SG reduction

	Unshared cost comparison
	Discussion
	Related works
	Open questions

	Index

